Solving Systems of Linear Inequalities by Bound Propagation

  • Konstantin Korovin
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)

Abstract

In this paper we introduce a new method for solving systems of linear inequalities. The algorithm incorporates many state-of-the-art techniques from DPLL-style reasoning. We prove soundness, completeness and termination of the method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Korovin, K., Voronkov, A.: Solving systems of linear inequalities by bound propagation, full version (2011), http://www.cs.man.ac.uk/~korovink/my_pub/
  4. 4.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL. J. ACM 53(6), 937–977 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, West Sussex (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Konstantin Korovin
    • 1
  • Andrei Voronkov
    • 1
  1. 1.The University of ManchesterUK

Personalised recommendations