Sine Qua Non for Large Theory Reasoning

  • Kryštof Hoder
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)


One possible way to deal with large theories is to have a good selection method for relevant axioms. This is confirmed by the fact that the largest available first-order knowledge base (the Open CYC) contains over 3 million axioms, while answering queries to it usually requires not more than a few dozen axioms. A method for axiom selection has been proposed by the first author in the Sumo INference Engine (SInE) system. SInE has won the large theory division of CASC in 2008. The method turned out to be so successful that the next two years it was used by the winner as well as by several other competing systems. This paper contains the presentation of the method and describes experiments with it in the theorem prover Vampire.


Selection Algorithm Depth Limit Mizar Problem Benchmark Suite Generality Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roederer, A., Puzis, Y., Sutcliffe, G.: divvy: An ATP meta-system based on axiom relevance ordering. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 157–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Armando, A., Baumgartner, P., Dowek, G. (eds.): IJCAR 2008. LNCS (LNAI), vol. 5195. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
  5. 5.
    Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS, pp. 2–9 (2001)Google Scholar
  7. 7.
    Plaisted, D.A., Yahya, A.H.: A relevance restriction strategy for automated deduction. Artif. Intell. 144(1-2), 59–93 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Pudlak, P.: Semantic selection of premisses for automated theorem proving. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) ESARLT. CEUR Workshop Proceedings, vol. 257, pp. 27–44. (2007) CEUR-WS.orgGoogle Scholar
  9. 9.
    Rudnicki, P. (ed.): An overview of the mizar project, pp. 311–332. University of Technology, Bastad (1992)Google Scholar
  10. 10.
    Sutcliffe, G.: CASC-J4 the 4th IJCAR ATP system competition. In: Armando (ed.) [2], pp. 457–458Google Scholar
  11. 11.
    Sutcliffe, G.: The tptp problem library and associated infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sutcliffe, G.: The cade-22 automated theorem proving system competition - casc-22. AI Commun. 23(1), 47–59 (2010)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Sutcliffe, G., Puzis, Y.: Srass - a semantic relevance axiom selection system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Urban, J.: Mptp 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning 37(1-2), 21–43 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the mizar mathematical library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 155–166. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskocil, J.: Malarea sg1- machine learner for automated reasoning with semantic guidance. In: Armando (ed.) [2], pp. 441–456.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kryštof Hoder
    • 1
  • Andrei Voronkov
    • 1
  1. 1.University of ManchesterManchesterUK

Personalised recommendations