Compression of Propositional Resolution Proofs via Partial Regularization

  • Pascal Fontaine
  • Stephan Merz
  • Bruno Woltzenlogel Paleo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)


This paper describes two algorithms for the compression of propositional resolution proofs. The first algorithm, RecyclePivots-WithIntersection, performs partial regularization, removing an inference η when it is redundant in the sense that its pivot literal already occurs as the pivot of another inference located below in the path from η to the root of the proof. The second algorithm, LowerUnits, delays the resolution of (both input and derived) unit clauses, thus removing (some) inferences having the same pivot but possibly occurring also in different branches of the proof.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time reductions of resolution proofs. Hardware and Software: Verification and Testing, 114–128 (2009)Google Scholar
  2. 2.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)Google Scholar
  4. 4.
    Bouton, T., de Oliveira, D. C.B., Déharbe, D., Fontaine, P.: veriT: An open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 151–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Cotton, S.: Two techniques for minimizing resolution proofs. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 306–312. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Exploring and Exploiting Algebraic and Graphical Properties of Resolution. In: 8th International Workshop on Satisfiability Modulo Theories (Part of FLoC - Federated Logic Conferences) (2010)Google Scholar
  7. 7.
    Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1997, pp. 106–119. ACM, New York (1997)Google Scholar
  8. 8.
    Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Press (2008)Google Scholar
  9. 9.
    Simone, S., Brutomesso, R., Sharygina, N.: An efficient and flexible approach to resolution proof reduction. In: 6th Haifa Verification Conference (2010)Google Scholar
  10. 10.
    Tseitin, G.: On the complexity of proofs in propositional logics. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning: Classical Papers in Computational Logic, vol. 2, pp. 1967–1970. Springer, Heidelberg (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pascal Fontaine
    • 1
  • Stephan Merz
    • 1
  • Bruno Woltzenlogel Paleo
    • 1
  1. 1.University of Nancy and INRIANancyFrance

Personalised recommendations