Advertisement

Exploiting Symmetry in SMT Problems

  • David Déharbe
  • Pascal Fontaine
  • Stephan Merz
  • Bruno Woltzenlogel Paleo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)

Abstract

Methods exploiting problem symmetries have been very successful in several areas including constraint programming and SAT solving. We here recast a technique to enhance the performance of SMT-solvers by detecting symmetries in the input formulas and use them to prune the search space of the SMT algorithm. This technique is based on the concept of (syntactic) invariance by permutation of constants. An algorithm for solving SMT by taking advantage of such symmetries is presented. The implementation of this algorithm in the SMT-solver veriT is used to illustrate the practical benefits of this approach. It results in a significant improvement of veriT’s performances on the SMT-LIB benchmarks that places it ahead of the winners of the last editions of the SMT-COMP contest in the QF_UF category.

Keywords

Symmetry Breaking Constraint Programming Predicate Symbol Proof Obligation Symmetry Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded model checking for timed systems. In: Peled, D., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Barrett, C., de Moura, L., Stump, A.: SMT-COMP: Satisfiability Modulo Theories Competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 20–23. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, ch.26, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  4. 4.
    Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. J. Applied Logic 7(1), 58–74 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: An open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 151–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. Journal of Symbolic Logic 52, 916–927 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding. In: Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications (2003)Google Scholar
  8. 8.
    Déharbe, D., Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Exploiting symmetry in SMT problems (2011), http://www.loria.fr/~fontaine/Deharbe6b.pdf
  9. 9.
    Gent, I.P., Petrie, K.E., Puget, J.-F.: Symmetry in Constraint Programming. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2, pp. 329–376. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  10. 10.
    Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Jia, X., Zhang, J.: A powerful technique to eliminate isomorphism in finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 318–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Krishnamurthy, B.: Short proofs for tricky formulas. Acta Inf. 22, 253–275 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Razborov, A.A.: Proof complexity of pigeonhole principles. In: Conference on Developments in Language Theory (DLT), pp. 100–116. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Roe, K.: The heuristic theorem prover: Yet another SMT modulo theorem prover. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 467–470. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Sakallah, K.A.: Symmetry and satisfiability. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 289–338. IOS Press, Amsterdam (2009)Google Scholar
  16. 16.
    Strichman, O., Seshia, S.A., Bryant, R.E.: Deciding separation formulas with SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 265–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Szeider, S.: The complexity of resolution with generalized symmetry rules. Theory Comput. Syst. 38(2), 171–188 (2005)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Déharbe
    • 1
  • Pascal Fontaine
    • 2
  • Stephan Merz
    • 2
  • Bruno Woltzenlogel Paleo
    • 3
  1. 1.Universidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.University of Nancy and INRIANancyFrance
  3. 3.Technische Universität WienAustria

Personalised recommendations