Advertisement

Experimenting with Deduction Modulo

  • Guillaume Burel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)

Abstract

Deduction modulo is a generic framework to describe proofs in a theory better than using raw axioms. This is done by presenting the theory through rules rewriting terms and propositions. In CSL 2010, LNCS 6247, p.155–169, we gave theoretical justifications why it is possible to embed a proof search method based on deduction modulo, namely Ordered Polarized Resolution Modulo, into an existing prover. Here, we describe the implementation of these ideas, starting from iProver. We test it by confronting Ordered Polarized Resolution Modulo and other proof-search calculi, using benchmarks extracted from the TPTP Library. For the integration of rewriting, we also compare several implementation techniques, based for instance on discrimination trees or on compilation. These results reveal that deduction modulo is a promising approach to handle proof search in theories in a generic but efficient way.

Keywords

Inference Rule Deductive System Proof Search Explicit Substitution Active Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benaissa, Z., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit substitutions which preserves strong normalisation. Journal of Functional Programming 6(5), 699–722 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Berger, U., Eberl, M., Schwichtenberg, H.: Normalization by evaluation. In: Möller, B., Tucker, J.V. (eds.) NADA 1997. LNCS, vol. 1546, pp. 117–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bonichon, R., Hermant, O.: A semantic completeness proof for taMeD. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 167–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Burel, G.: Embedding deduction modulo into a prover. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 155–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Burel, G.: Efficiently simulating higher-order arithmetic by a first-order theory modulo. Logical Methods in Computer Science 7(1:3), 1–31 (2011)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Burel, G., Kirchner, C.: Regaining cut admissibility in deduction modulo using abstract completion. Information and Computation 208(2), 140–164 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-pi-calculus modulo. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 102–117. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) IFIP TCS. IFIP AICT., vol. 323, pp. 182–196. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ. Mathematical Structures in Computer Science 11(1), 1–25 (2001)CrossRefGoogle Scholar
  10. 10.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dowek, G., Miquel, A.: Cut elimination for Zermelo’s set theory (2006); available on authors’ web pageGoogle Scholar
  12. 12.
    Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 423–437. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Graf, P. (ed.): Term Indexing. LNCS (LNAI), vol. 1053. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  14. 14.
    Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Razianov, A., Voronkov, A.: The design and implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  16. 16.
    Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE. LNCS, vol. 5663, pp. 140–145. Springer (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guillaume Burel
    • 1
  1. 1.Énsiie/CédricÉvry cedexFrance

Personalised recommendations