Extending Sledgehammer with SMT Solvers

  • Jasmin Christian Blanchette
  • Sascha Böhme
  • Lawrence C. Paulson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6803)

Abstract

Sledgehammer is a component of Isabelle/HOL that employs first-order automatic theorem provers (ATPs) to discharge goals arising in interactive proofs. It heuristically selects relevant facts and, if an ATP is successful, produces a snippet that replays the proof in Isabelle. We extended Sledgehammer to invoke satisfiability modulo theories (SMT) solvers as well, exploiting its relevance filter and parallel architecture. Isabelle users are now pleasantly surprised by SMT proofs for problems beyond the ATPs’ reach. Remarkably, the best SMT solver performs better than the best ATP on most of our benchmarks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahrendt, W., Beckert, B., Hähnle, R., Menzel, W., Reif, W., Schellhorn, G., Schmitt, P.H.: Integrating automated and interactive theorem proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction—A Basis for Applications. Systems and Implementation Techniques, vol. II, pp. 97–116. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  2. 2.
    Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Applied Logic, vol. 27. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  3. 3.
    Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 76–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Barsotti, D., Nieto, L.P., Tiu, A.: Verification of clock synchronization algorithms: Experiments on a combination of deductive tools. Formal Asp. Comput. 19(3), 321–341 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II—a cooperative automatic theorem prover for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bezem, M., Hendriks, D., de Nivelle, H.: Automatic proof construction in type theory using resolution. J. Auto. Reas. 29(3-4), 253–275 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie—an interactive prover-backend for the Verifying C Compiler. J. Auto. Reas. 44(1-2), 111–144 (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Formal Asp. Comput. 20, 379–405 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Claessen, K.: Equinox, a new theorem prover for full first-order logic with equality. Presentation at Dagstuhl Seminar on Deduction and Applications (2005)Google Scholar
  13. 13.
    Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Couchot, J.-F., Lescuyer, S.: Handling polymorphism in automated deduction. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 263–278. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Dutertre, B., de Moura, L.: The Yices SMT solver (2006), http://yices.csl.sri.com/tool-paper.pdf
  17. 17.
    Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In: Rushby, J., Shankar, N. (eds.) Automated Formal Methods, pp. 3–13 (2008)Google Scholar
  18. 18.
    Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automation + soundness: Towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 167–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: These proceedings (2011)Google Scholar
  20. 20.
    Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 311–321. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics, number CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)Google Scholar
  22. 22.
    Keller, C.: Cooperation between SAT, SMT provers and Coq. Presentation at the Synthesis. Verification and Analysis of Rich Models workshop (2011)Google Scholar
  23. 23.
    Klein, G., Nipkow, T., Paulson, L. (eds.): The Archive of Formal Proofs, http://afp.sf.net/
  24. 24.
    Korovin, K.: Instantiation-based automated reasoning: From theory to practice. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 163–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining HOL-Light and CVC Lite. Electr. Notes Theor. Comput. Sci. 144(2), 43–51 (2006)CrossRefMATHGoogle Scholar
  27. 27.
    Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Auto. Reas. 40(1), 35–60 (2008)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Moskal, M.: Programming with triggers. In: Dutertre, B., Strichman, O. (eds.) Satisfiability Modulo Theories (2009)Google Scholar
  30. 30.
    Nipkow, T.: Re: [isabelle] A beginner’s questionu [sic], (November 26, 2010), https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2010-November/msg00097.html
  31. 31.
    Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  32. 32.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 335–367. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  33. 33.
    Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) International Workshop on the Implementation of Logics (2010)Google Scholar
  34. 34.
    Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2 (2006), http://goedel.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
  36. 36.
    Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Comm. 15(2-3), 91–110 (2002)MATHGoogle Scholar
  37. 37.
    Rushby, J.M.: Tutorial: Automated formal methods with PVS, SAL, and Yices. In: Hung, D.V., Pandya, P. (eds.) Software Engineering and Formal Methods, p. 262. IEEE, New York (2006)Google Scholar
  38. 38.
    Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  39. 39.
    Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M.: Proof development with Ωmega: The irrationality of \(\sqrt2\). In: Kamareddine, F. (ed.) Thirty Five Years of Automating Mathematics. Applied Logic, vol. 28, pp. 271–314. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  40. 40.
    Sutcliffe, G.: System description: SystemOnTPTP. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 406–410. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  41. 41.
    Sutcliffe, G., Chang, C., Ding, L., McGuinness, D., da Silva, P.P.: Different proofs are good proofs. In: McGuinness, D., Stump, A., Sutcliffe, G., Tinelli, C. (eds.) Workshop on Evaluation Methods for Solvers, and Quality Metrics for Solutions, pp. 1–10 (2010)Google Scholar
  42. 42.
    Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Auto. Reas. 37(1-2), 21–43 (2006)CrossRefMATHGoogle Scholar
  43. 43.
    Wampler-Doty, M.: A complete proof of the Robbins conjecture. In: Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs (2010), http://afp.sf.net/entries/Robbins-Conjecture.shtml
  44. 44.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1965–2013. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  45. 45.
    Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  46. 46.
    Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: Dos Reis, G., Théry, L. (eds.) Programming Languages for Mechanized Mathematics Systems, ACM Digital Library (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jasmin Christian Blanchette
    • 1
  • Sascha Böhme
    • 1
  • Lawrence C. Paulson
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenGermany
  2. 2.Computer LaboratoryUniversity of CambridgeU.K.

Personalised recommendations