Agent-Based Simulation of Joint Fire Support Teams – Collaboration in Network-Centric Warfare Scenarios

  • Christian Gerstner
  • Robert Siegfried
  • Nane Kratzke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6066)


We present an agent-based model to compare different coordination patterns in joint fire support (JFS) scenarios. Modern warfighting approaches depend heavily on a separation of concerns (like reconnaissance, coordination and engagement) and therefore impose high requirements on the coordination of all involved parties. Following the General Reference Model for Agent-Based Modeling and Simulation (GRAMS), we present an agent-based model of this problem domain. Our simulations indicate that decentralized JFS coordination leads to smaller average times from identification of a target to final engagement, while at the same time requiring extensive resources. Central coordination is more effective in terms of engaged units and reduced resource requirements, but tends to take more time.


Problem Domain Coordination Pattern Threat Level Ground Unit Extensive Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, D., Garstka, J., Stein, F.: Network Centric Warfare. DoD Command and Control Research Program (CCRP) (1999),
  2. 2.
    Alberts, D., Hayes, R.: Power to the edge. DoD Command and Control Research Program (CCRP) (2003),
  3. 3.
    Cares, J.: An Information Age Combat Model. Tech. rep., Director, Net Assessment, Office of the Secretary of Defense (2004),
  4. 4.
    Cares, J.: Distributed Networked Operations: The Foundations of Network Centric Warfare. iUniverse (2006)Google Scholar
  5. 5.
    Gerstner, C.: Erweiterung und Implementierung eines Modells zur Analyse von Fragestellungen zur Koordination verteilter Organisationsstrukturen. Bsc thesis, University of the Federal Armed Forces Munich (December 2009)Google Scholar
  6. 6.
    Newmann, M.E.J.: The mathematics of networks. In: Blume, L.E., Durlauf, S.N. (eds.) The New Palgrave Encyclopedia of Economics, Palgrave Macmillan, Basingstoke (2008), Google Scholar
  7. 7.
    Paruchuri, P., Pearce, J., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Coordinating randomized policies for increasing security of agent systems. Journal of Information Technology and Management (ITM) 10(1), 67–79 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Santamaria, A., Warwick, W.: Sailing to the Model’s Edge: Testing the Limits of Parameter Space and Scaling. In: Proceedings of the BRIMS 2010 (2010)Google Scholar
  9. 9.
    Siegfried, R.: A General Reference Model for Agent-Based Modeling and Simulation. In: 7th European Workshop on Multi-Agent Systems, EUMAS 2009 (December 2009)Google Scholar
  10. 10.
    Siegfried, R., Lehmann, A., El Abdouni Khayari, R., Kiesling, T.: A Reference Model for Agent-Based Modeling and Simulation. In: Proceedings of the Spring Simulation Multiconference, SCS (2009), Agent-Directed Simulation SymposiumGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Gerstner
    • 1
  • Robert Siegfried
    • 1
  • Nane Kratzke
    • 2
  1. 1.Universität der Bundeswehr MünchenNeubibergGermany
  2. 2.Lübeck University of Applied SciencesLübeckGermany

Personalised recommendations