The Danger Theory Applied To Vegetal Image Pattern Classification

  • Esma Bendiab
  • Mohamed Khirreddine Kholladi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6825)


Artificial Immune Systems (AIS) are a type of intelligent algorithm inspired by the principles and processes of the human immune system. Despite the successful implementation of different AIS, the validity of the paradigm “self non self” have lifted many questions. The Danger theory was an alternative to this paradigm. If we involve its principles, the AIS are being applied as a classifier. However, image classification offers new prospects and challenges to data mining and knowledge extraction. It is an important tool and a descriptive task seeking to identify homogeneous groups of objects based on the values of their attributes. In this paper, we describe our initial framework in which the danger theory was apprehended by the Dendritic cells algorithm is applied to vegetal image classification. The approach classifies pixel in vegetal or soil class. Experimental results are very encouraging and show the feasibility and effectiveness of the proposed approach.


Artificial Immune Systems (AIS) Danger Theory (DT) Dendritic Cell Algorithm (DCA) Image Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dasgupta, D. (ed.): Artificial Immune Systems and their applications. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  2. 2.
    De Castro, L., Timmis, J. (eds.): Artificial Immune Systems: A New Computational Approach. Springer, London (September 2002)zbMATHGoogle Scholar
  3. 3.
    Hart, E., Timmis, J.: Application Areas of AIS: The Past, The Present and The Future. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 483–497. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger theory: The link between AIS and IDS? In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Aickelin, U., Cayzer, S.: The danger theory and its application to artificial immune systems. In: The 1st International Conference on Artificial Immune Systems (ICARIS 2002), Canterbury, UK, pp. 141–148 (2002), Google Scholar
  6. 6.
    Greensmith, J.: The Dendritic Cell Algorith. PhD thesis, School of Computer Science. University of Nottingham (2007)Google Scholar
  7. 7.
    Mitra Tinkuacharya, S. (ed.): Data Mining, Multimedia, Soft. Computing and Bioinformatics. John Wiley & Sons, Hoboken (2003)Google Scholar
  8. 8.
    Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28(5) (March 10,2007)Google Scholar
  9. 9.
    Berkhin, P.: Survey of clustering data mining techniques. Technical Report, Accrue Software, San Jose, California (2002)Google Scholar
  10. 10.
    Foucher, P., Revollon, P., Vigouroux, B.: Segmentation d’images en couleurs par réseau de neurones: Application au domaine végétal, Actes du Congrées francophone de Vision par Ordinateur (ORASIS), Cahors, France, pp. 309– 317 (2001)Google Scholar
  11. 11.
    Clement, A., Vigouroux, B.: Unsupervised segmentation of scenes containing vegetation (Forsythia) and soil by hierarchical analysis of bi-dimensional histograms. Pattern Recognition Letters 24, 1951–1957 (2003)CrossRefGoogle Scholar
  12. 12.
    Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Oates, R., Greensmith, J., Aickelin, U., Garibaldi, J., Kendall, G.: The Application of a Dendritic Cell Algorithm to a Robotic Classifier. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 204–215. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Greensmith, J., Twycross, J., Aickelin, U.: Dendritic Cells for Anomaly Detection. In: IEEE World Congress on Computational Intelligence, Vancouver, Canada, pp. 664–671 (2006)Google Scholar
  15. 15.
    Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Aickelin, U., Greensmith, J., Twycross, J.: Immune System Approaches to Intrusion Detection – A Review. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 316–329. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Greensmith, J., Twycross, J., Aickelin, U.: Dendritic cells for anomaly detection. In: IEEE Congress on Evolutionary Computation (2006)Google Scholar
  18. 18.
    Greensmith, J., Aickelin, U., Feyereisl, J.: The DCA-SOMe comparison: A comparative study between two biologically-inspired algorithms. Evolutionary Intelligence: Special Issue on Artificial Immune Systems (2008) (accepted for publication)Google Scholar
  19. 19.
    Hoffman, K. et al.: Danger theory and collaborative filtering in MANETs. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Greensmith, J., Aickelin, U., Tedesco, G.: Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm. Journal Information Fusion 11(1) (January 2010)Google Scholar
  21. 21.
    Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics 3, 610–621 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Esma Bendiab
    • 1
  • Mohamed Khirreddine Kholladi
    • 1
  1. 1.MISC Laboratory, Department of Computer ScienceUniversity of ConstantineAlgeria

Personalised recommendations