Fault Detection in Analog Circuits Using a Fuzzy Dendritic Cell Algorithm

  • Jorge L. M. Amaral
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6825)


This work presents the early stages of the development of a fault detection system based on the Dendritic Cell Algorithm. The system is designed to detect parametric faults in linear time invariant circuits. The safe signal is related to the mean square error between the PAA representations of the impulse responses of the circuit under test and the golden circuit. The danger signal is related to the variation of that error. Instead of using a weighted sum with fixed weights, a fuzzy inference system (FIS) is used, since it is easier to define linguistic rules to infer the combination of the signals than to find appropriate weight values.


Fault Detection Dendritic Cell Algorithm Analog Circuits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albustani, H.: Modeling Methods for Testability Analysis of Analog Integrated Circuits Based on Pole-Zero Analysis. Ph.D Thesis, Universität Duisburg-Essen, 182p. (2004) Google Scholar
  2. 2.
    Claasen, T.A.C.M.: System on a Chip: Changing IC Design Today and in the Future. IEEE Micro 23(3), 20–26 (2003)CrossRefGoogle Scholar
  3. 3.
    Conca, P., Nicosia G., Stracquadanio, G., Timmis J.: Nominal-Yield-Area Tradeoff in Google Scholar
  4. 4.
    Fenton, W. G., McGinnity, T. M., Maguire, L. P.: Fault diagnosis of electronic systems using intelligent techniques: a review. IEEE, Transactions on Systems, Man and Cybernetics – Part C, 31(3), 269–281 (2001) CrossRefGoogle Scholar
  5. 5.
    Castro, L. N., Timmis J.: Artificial Immune System: A New Computational Intelligence Approach, Springer-Verlag (2002) zbMATHGoogle Scholar
  6. 6.
    Dasgupta,D., Ji, Z., González, F.: Artificial Immune System (AIS) Research in the Last Five Years, Proceedings of the International Conference on Evolutionary Computation, Australia (December 8-12, 2003) Google Scholar
  7. 7.
    Forrest S., Perelson, A. S., Allen L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. Proc. IEEE Symposium on Research in Security and Privacy, May 16-18, Oakland, USA, 202-212 (1994) Google Scholar
  8. 8.
    Martins, J. F., Costa Branco, P. J., Dente, J. A.: Fault detection using immune-based systems and formal language algorithms. Proc. 39th IEEE Conference on Decision and Control, December 12-15, Sidney, Australia. 3, 2633–2638 (2000) Google Scholar
  9. 9.
    Hart, E., Timmis, J.: Application areas of AIS: the past, the present and the future. In: Proc. 4th Int. Conf. Artif. Immune Syst. LNCS, vol. 3627, 483–498 (2005) CrossRefGoogle Scholar
  10. 10.
    Stibor T., Timmis, J., Eckert, C.: A comparative study of real-valued negative selection to statistical anomaly detection techniques. ICARIS, 262–275 (2005) CrossRefGoogle Scholar
  11. 11.
    Stibor, T., Timmis, J.: Comments on real-valued negative selection vs. real-valued positive selection and one-class SVM. In: Stibor, T., Timmis, J. (eds.) IEEE, Congress on Evolutionary Computation, pp. 3727–3734 (2007)Google Scholar
  12. 12.
    Greensmith, J.: The Dendritic Cell Algorithm. PhD thesis, The University of Nottingham, Computer Science, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB (2007) Google Scholar
  13. 13.
    Matzinger, P. Tolerance, danger, and the extended family. Annual Review of Immunology, 12(1), 991–1045 (1994) CrossRefGoogle Scholar
  14. 14.
    Stibor, T., Oates R., Kendall, G., Garibaldi, J.M.: Geometrical insights into the dendritic cell algorithm. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation (GECCO ’09). ACM, New York, NY, USA, 1275-1282 (2009) Google Scholar
  15. 15.
    Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Knowledge and Information Systems 3(3), 263-286 (2000) CrossRefzbMATHGoogle Scholar
  16. 16.
    Bandler, J.W., Salama, A.E.: Fault Diagnosis in Analog Circuits. Proc. IEEE,73(8), 1279-1235 (1985) CrossRefGoogle Scholar
  17. 17.
    Mustapha, S.; Bozena, K.: Analog Circuit Fault Diagnosis Based on Sensitivity Computation and Functional Testing. IEEE Des. Test 9(1), 30-39 (January 1992) CrossRefGoogle Scholar
  18. 18.
    Fani, A., Giua, A., Marchesi, M., Montisci, A.: A Neural Network Diagnosis Approach for Analog Circuits. Applied Intelligence, 11(2), 169-186 (1999) CrossRefGoogle Scholar
  19. 19.
    Yi, Z., Xueye, W., Haifeng, J.: One-class classifier based on SBT for analog circuit fault diagnosis. Measurement, 41(4), 371-380, (May 2008) ISSN 0263-2241 CrossRefGoogle Scholar
  20. 20.
    Gonzalez, F., Dasgupta, D., Kozma R. Combining negative selection and classification techniques for anomaly detection. Proc. Congress on Evolutionary Computation, Hawaii, 705-710 (2002) Google Scholar
  21. 21.
    Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable size detectors. Lecture Notes in Computer Science 3102, Proceedings of GECCO, 287-298 (2004) CrossRefGoogle Scholar
  22. 22.
    Amaral, J.L.M., Amaral, J.F.M., Tanscheit, R.: An Immune Fault Detection System for Analog Circuits with Automatic Detector Generation. In: IEEE Congress on Evolutionary Computation, pp. 2966–2972 (2006)Google Scholar
  23. 23.
    Amaral, J.L.M., Amaral, J.F.M. : Tanscheit, R., Real-Valued Negative Selection Algorithm with a Quasi-Monte Carlo Genetic Detector Generation. LNCS, vol. 4628, 156–167 (2007) CrossRefGoogle Scholar
  24. 24.
    Ji, Z. e Dasgupta, D.: Applicability issues of the real-valued negative selection algorithms, Proceedings of Genetic and Evolutionary Computation Conference (GECCO), ACM Press, 111–118, (July, 2006) Google Scholar
  25. 25.
    Freitas, A. A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems for Data Mining. IEEE, Transactions on Evolutionary Computation, 11(4) (August, 2007) Google Scholar
  26. 26.
    Greensmith, J., Aickelin, U. , Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. LNCS, vol. 3627, 153–167 (2005) CrossRefGoogle Scholar
  27. 27.
    Mokhtar, M.: A modified Dendritic Cell Algorithm for on-line error detection in robotic systems. In: IEEE, Congress on Evolutionary Computation, pp. 2055–2062 (2009)Google Scholar
  28. 28.
    Greensmith, J., Aickelin, U.: The Deterministic Dendritic Cell Algorithm. LNCS, vol. 5132, 291–302 (2008) CrossRefGoogle Scholar
  29. 29.
    Singh, A., Patel, C., Plusquellic, J.: On-chip impulse response generation for analog and mixed-signal testing. Proc. IEEE International Test Conference, Charlotte, NC, 262-270 (2004) Google Scholar
  30. 30.
    Stibor, T.: On Aspects of Machine Learning and the Benefits to the AIS Community. Access in: accessed in March 2011
  31. 31.
    Spina R., Upadhyaya, S.: Linear circuit fault diagnosis using neuromorphic analyzers. IEEE, Transactions on Circuits and Systems II, 44(3), 188-196, (1997) CrossRefGoogle Scholar
  32. 32.
    Aminian, M., Aminian, F.: Neural-network based analog-circuit fault-diagnosis using wavelet transform as preprocessor. IEEE ,Transactions on Systems, Man and Cybernetics, 47(2), 151-156 (2000) Google Scholar
  33. 33.
    Tax, D.M.J., Duin, R.P.W: Support vector domain description. Pattern Recognition Letters, 20 (11-13), 1191-1199 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jorge L. M. Amaral
    • 1
  1. 1.Dept. of Electronics and Telecommunications EngineeringRio de Janeiro State UniversityRio de JaneiroBrazil

Personalised recommendations