Advertisement

Context-Dependent Feedback Prioritisation in Exploratory Learning Revisited

  • Mihaela Cocea
  • George D. Magoulas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6787)

Abstract

The open nature of exploratory learning leads to situations when feedback is needed to address several conceptual difficulties. Not all, however, can be addressed at the same time, as this would lead to cognitive overload and confuse the learner rather than help him/her. To this end, we propose a personalised context-dependent feedback prioritisation mechanism based on Analytic Hierarchy Process (AHP) and Neural Networks (NN). AHP is used to define feedback prioritisation as a multi-criteria decision-making problem, while NN is used to model the relation between the criteria and the order in which the conceptual difficulties should be addressed. When used alone, AHP needs a large amount of data from experts to cover all possible combinations of the criteria, while the AHP-NN synergy leads to a general model that outputs results for any such combination. This work was developed and tested in an exploratory learning environment for mathematical generalisation called eXpresser.

Keywords

context-dependent personalised feedback feedback prioritisation exploratory learning analytic hierarchy process neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akman, V., Bouquet, P., Thomason, R.H., Young, R.A. (eds.): CONTEXT 2001. LNCS (LNAI), vol. 2116. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Anand, S., Mobasher, B.: Contextual recommendation. In: Proceedings of WebMine 2006, pp. 142–160 (2007)Google Scholar
  3. 3.
    Anderson, J.A.: An Introduction to Neural Networks. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  4. 4.
    Baylari, A., Montazer, G.: Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Systems with Applications 36(4), 8013–8021 (2009)CrossRefGoogle Scholar
  5. 5.
    Behrman, M., Linder, R., Assadi, A.H., Stacey, B.R., Backonja, M.M.: Classification of patients with pain based on neuropathic pain symptoms: Comparison of an artificial neural network against an established scoring system. European Journal of Pain 11(4), 370–376 (2007)CrossRefGoogle Scholar
  6. 6.
    Brinker, K., Hüllermeier, E.: Label ranking in case-based reasoning. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 77–91. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bunt, A., Conati, C.: Probabilistic student modelling to improve exploratory behaviour. User Modelling and User-Adaptive Interaction 13(3), 269–309 (2003)CrossRefGoogle Scholar
  8. 8.
    Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 89–96. ACM, New York (2005)Google Scholar
  9. 9.
    Cartwright, H.M.: Artificial neural networks in biology and chemistry the evolution of a new analytical tool. In: Walker, J.M., Lvingstone, D.J. (eds.) Artificial Neural Networks, Methods in Molecular Biology, vol. 458, pp. 1–13. Humana Press, Totowa (2009)CrossRefGoogle Scholar
  10. 10.
    Cheng, W., Hühn, J., Hüllermeier, E.: Decision tree and instance-based learning for label ranking. In: Proceedings of the 26th International Conference on Machine Learning, ICML 2009, pp. 161–168. ACM, New York (2009)Google Scholar
  11. 11.
    Cocea, M., Magoulas, G.: Context-dependent personalised feedback prioritisation in exploratory learning for mathematical generalisation. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 271–282. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Cocea, M., Magoulas, G.D.: Hybrid model for learner modelling and feedback prioritisation in exploratory learning. International Journal of Hybrid Intelligent Systems 6(4), 211–230 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Csikszentmihalyi, M.: Finding Flow: The Psychology of Engagement With Everyday Life. BasicBooks, New York (1997)Google Scholar
  14. 14.
    Dekel, O., Manning, C.D., Singer, Y.: Log-linear models for label ranking. Advances in Neural Information Processing Systems 16, 497–504 (2003)Google Scholar
  15. 15.
    Dreyfus, G.: Neural networks: methodology and applications. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  16. 16.
    Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. Advances in Neural Information Processing Systems 14, 681–687 (2001)Google Scholar
  17. 17.
    Grigoriadou, M., Kornilakis, H., Papanikolaou, K.A., Magoulas, G.D.: Fuzzy inference for student diagnosis in adaptive educational hypermedia. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 191–202. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Grigoriadou, M., Samarakou, M., Mitropoulos, D., Rigoutsos, A., Stavridou, E., Solomonidou, C.: Vectors in physics and mathematics. In: Proceedings of the International Conference on Technology and Education, pp. 71–73 (1999)Google Scholar
  19. 19.
    Hagan, M., Menhaj, M.: Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks 5, 989–993 (1994)CrossRefGoogle Scholar
  20. 20.
    Ho, W.: Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research 186(1), 211–228 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Johnson, D., Johnson, R.: Cooperative learning and feedback in technology-based instruction. In: Dempsey, J.V., Sales, G.C. (eds.) Interactive Instruction and Feedback, Englewood Cliffs, NJ, pp. 133–157 (1993)Google Scholar
  22. 22.
    van Joolingen, W.R., King, S., de Jong, T.: The simquest authoring system for simulation-based discovery environments. In: de Boulay, B., Mizoguchi, R. (eds.) Knowledge and Media in Learning Systems, pp. 79–87. IOS, Amsterdam (1997)Google Scholar
  23. 23.
    Kirschner, P., Sweller, J., Clark, R.E.: Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential and inquiry-based teaching. Educational Psychologist 41(2), 75–86 (2006)CrossRefGoogle Scholar
  24. 24.
    Koksal, G., Egitman, A.: Planning and design of industrial engineering education quality. Computers & Industrial Engineering 35(3-4), 639–642 (1998)CrossRefGoogle Scholar
  25. 25.
    Krycha, K.A., Wagner, U.: Applications of artificial neural networks in management science: a survey. Journal of Retailing and Consumer Services 6(4), 185–203 (1999)CrossRefGoogle Scholar
  26. 26.
    Kwak, N.K., Lee, C.W.: A multicriteria decision-making approach to university resource allocation and information infrastructure planning. European Journal of Operational Research 110(2), 234–242 (1998)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kwon, O.: The potential roles of context-aware computing technology in optimization-based intelligent decision-making. Expert Systems with Applications 31(3), 629–642 (2006)CrossRefGoogle Scholar
  28. 28.
    Lam, K., Zhao, X.: An application of quality function deployment to improve the quality of teaching. International Journal of Quality and Reliability Management 15(4), 389–413 (1998)CrossRefGoogle Scholar
  29. 29.
    Landajo, M., de Andrés, J., Lorca, P.: Robust neural modeling for the cross-sectional analysis of accounting information. European Journal of Operational Research 177(2), 1232–1252 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Mason, B., Bruning, R.: Providing feedback in computer-based instruction: What the research tells us (2001), http://dwb.unl.edu/Edit/MB/MasonBruning.html
  31. 31.
    Noss, R., Hoyles, C., Mavrikis, M., Geraniou, E., Gutierrez-Santos, S., Pearce, D.: Broadening the sense of ‘dynamic’: a microworld to support students’ mathematical generalisation. The International Journal on Mathematics Education 41(4), 493–503 (2009)Google Scholar
  32. 32.
    Ozdemir, M.S., Gasimov, R.N.: The analytic hierarchy process and multiobjective 0–1 faculty course assignment. European Journal of Operational Research 157(2), 398–408 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Pearce, D., Mavrikis, M., Geraniou, E., Gutiérrez, S.: Issues in the design of an environment to support the learning of mathematical generalisation. In: Dillenbourg, P., Specht, M. (eds.) EC-TEL 2008. LNCS, vol. 5192, pp. 326–337. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Networks 11, 761–767 (1998)CrossRefGoogle Scholar
  35. 35.
    Saaty, T.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  36. 36.
    Schlechtingen, M., Santos, I.F.: Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection. Mechanical Systems and Signal Processing (2010) (in Press)Google Scholar
  37. 37.
    Schmitt, C., Dengler, D., Bauer, M.: Multivariate preference models and decision making with the MAUT machine. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS (LNAI), vol. 2702, pp. 297–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Vasilyeva, E.: Towards personalized feedback in educational computer games for children. In: Proceedings of the Sixth Conference on IASTED International Conference Web-Based Education, vol. 2, pp. 597–602. ACTA Press (2007)Google Scholar
  39. 39.
    Vembu, S., Gärtner, T.: Label ranking algorithms: A survey. In: Johannes Fürnkranz, E.H. (ed.) Preference Learning. Springer, Heidelberg (2010)Google Scholar
  40. 40.
    Wang, S., Treat, T., Brownell, K.: Cognitive processing about classroom-relevant contexts: Teachers’ attention to and utilization of girls’ body size, ethnicity, attractiveness, and facial affect. Journal of Educational Psychology 100(2), 473–489 (2008)CrossRefGoogle Scholar
  41. 41.
    Wiggins, G.: Feedback: how learning occurs (2008), http://www.authenticeducation.org/bigideas/article.lasso?artId=61
  42. 42.
    Zigmont, J.J., Kappus, L.J., Sudikoff, S.N.: Theoretical foundations of learning through simulation. Seminars in Perinatology 35(2), 47–51 (2011)CrossRefGoogle Scholar
  43. 43.
    Zopounidis, C., Doumpos, M.: Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research 138(2), 229–246 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mihaela Cocea
    • 1
    • 2
  • George D. Magoulas
    • 2
  1. 1.School of ComputingUniversity of PortsmouthPortsmouthUK
  2. 2.London Knowledge Lab, Birkbeck CollegeUniversity of LondonLondonUK

Personalised recommendations