Advertisement

Modeling Mental Workload Using EEG Features for Intelligent Systems

  • Maher Chaouachi
  • Imène Jraidi
  • Claude Frasson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6787)

Abstract

Endowing systems with abilities to assess a user’s mental state in an operational environment could be useful to improve communication and interaction methods. In this work we seek to model user mental workload using spectral features extracted from electroencephalography (EEG) data. In particular, data were gathered from 17 participants who performed different cognitive tasks. We also explore the application of our model in a non laboratory context by analyzing the behavior of our model in an educational context. Our findings have implications for intelligent tutoring systems seeking to continuously assess and adapt to a learner’s state.

Keywords

cognitive workload EEG ITS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berka, C., Levendowski, D.J., Cvetinovic, M.M., et al.: Real-Time Analysis of EEG Indexes of Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset. International Journal of Human-Computer Interaction 17, 151–170 (2004)CrossRefGoogle Scholar
  2. 2.
    Gevins, A., Smith, M.E.: Assessing fitness-for-duty and predicting performance with cognitive neurophysiologic measures. In: Caldwell, J.A., Wesensten, N.J. (eds.) Biomonitoring for Physiological and Cognitive Performance during Military Operations. Proceedings of SPIE, vol. 5797, 18, pp. 127–138 (2005)Google Scholar
  3. 3.
    Murata, A.: An Attempt to Evaluate Mental Workload Using Wavelet Transform of EEG. Human Factors: The Journal of the Human Factors and Ergonomics Society 47, 498–508 (2005)CrossRefGoogle Scholar
  4. 4.
    Smith, M.E., Gevins, A.: Neurophysiologic monitoring of mental workload and fatigue during operation of a flight simulator. In: Caldwell, J.A., Wesensten, N.J. (eds.) Proceedings of SPIE Defense and Security Symposium, Biomonitoring for Physiological and Cognitive Performance during Military Operations, pp. 116–126. SPIE, Orlando (2005)CrossRefGoogle Scholar
  5. 5.
    Wilson, G.: Operator functional state assessment for adaptive automation implementation. In: Caldwell, J.A., Wesensten, N.J. (eds.) Proceedings of SPIE Defense and Security Symposium, Biomonitoring for Physiological and Cognitive Performance during Military Operations, pp. 100–104. SPIE, Orlando (2005)CrossRefGoogle Scholar
  6. 6.
    Parasuraman, R.: Neuroergonomics: the brain at work. Oxford University Press, New York (2005)Google Scholar
  7. 7.
    Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology 40, 187–195 (1995)CrossRefGoogle Scholar
  8. 8.
    Prinzel, L.J., Freeman, F.G., Scerbo, M.W.: A Closed-Loop System for Examining Psychophysiological Measures for Adaptive Task Allocation. International Journal of Aviation Psychology 10, 393–410 (2000)CrossRefGoogle Scholar
  9. 9.
    Sterman, M.B., Kaiser, D.A., Mann, C.A., et al.: Application of Quantitative EEG Analysis to Workload Assessment in an Advanced Aircraft Simulator. In: Human Factors and Ergonomics, Seattle, Washington, USA, pp. 118–121 (1993)Google Scholar
  10. 10.
    Hancock, P.A., Warm, J.S.: A Dynamic Model of Stress and Sustained Attention. Human Factors and Ergonomics Society 31, 519–537 (1989)Google Scholar
  11. 11.
    Arroyo, I., Woolf, B.: Inferring learning and attitudes from a Bayesian Network of log file data. In: Proceeding of the 2005 Conference on Artificial Intelligence in Education: Supporting Learning through Intelligent and Socially Informed Technology, pp. 33–40. IOS Press, Amsterdam (2005)Google Scholar
  12. 12.
    Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting Student Misuse of Intelligent Tutoring Systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 531–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Beck, J.E.: Engagement tracing: using response times to model student disengagement. In: Proceeding of the 2005 Conference on Artificial Intelligence in Education: Supporting Learning through Intelligent and Socially Informed Technology, pp. 88–95. IOS Press, Amsterdam (2005)Google Scholar
  14. 14.
    Johns, J., Woolf, B.: A dynamic mixture model to detect student motivation and proficiency. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1, pp. 163–168. AAAI Press, Boston (2006)Google Scholar
  15. 15.
    Arroyo, I., Cooper, D.G., Burleson, W., et al.: Emotion Sensors Go To School. In: Proceeding of the 2009 Conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, pp. 17–24. IOS Press, Amsterdam (2009)Google Scholar
  16. 16.
    D’Mello, S., Craig, S., Witherspoon, A., et al.: Automatic detection of learner’s affect from conversational cues. User Modeling and User-Adapted Interaction 18, 45–80 (2008)CrossRefGoogle Scholar
  17. 17.
    Forbes-Riley, K., Rotaru, M., Litman, D.J.: The relative impact of student affect on performance models in a spoken dialogue tutoring system. User Modeling and User-Adapted Interaction 18, 11–43 (2008)CrossRefGoogle Scholar
  18. 18.
    Stevens, R., Galloway, T., Berka, C.: Integrating EEG Models of Cognitive Load with Machine Learning Models of Scientific Problem Solving. In: Schmorrow, D., Stanney, K., Reeves, L. (eds.) Augmented Cognition: Past, Present and Future, pp. 55–65. Strategic Analysis, Inc., Arlington (2006)Google Scholar
  19. 19.
    Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple sychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2004)CrossRefGoogle Scholar
  20. 20.
    Gevins, A., Smith, M.E.: Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science 4, 113–131 (2003)CrossRefGoogle Scholar
  21. 21.
    Kohlmorgen, J., Dornhege, G., Braun, M., et al.: Improving human performance in a real operating environment through real-time mental workload detection. In: Toward Brain-Computer Interfacing, pp. 409–422. MIT Press, Cambridge (2007)Google Scholar
  22. 22.
    Heger, D., Putze, F., Schultz, T.: Online Workload Recognition from EEG Data during Cognitive Tests and Human-Machine Interaction. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS, vol. 6359, pp. 410–417. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Honal, M., Schultz., T.: Determine task demand from brain activity. In: 3rd International Conference on Bio-inspired Systems and Signal Processing (2008)Google Scholar
  24. 24.
    Berka, C., Levendowski, D.J., Lumicao, M.N., et al.: EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks. Aviation, Space, and Environmental Medicine 78, B231–B244 (2007)Google Scholar
  25. 25.
    Stevens, R., Galloway, T., Berka, C.: EEG-Related Changes in Cognitive Workload, Engagement and Distraction as Students Acquire Problem Solving Skills. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 187–196. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Stevens, R.H., Galloway, T., Berka, C.: Integrating innovative neuro-educational technologies (I-Net) into K-12 science classrooms. In: Proceedings of the 3rd International Conference on Foundations of Augmented Cognition, Beijing, China, pp. 47–56 (2007)Google Scholar
  27. 27.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, pp. 139–183. North-Holland, Amsterdam (1988)CrossRefGoogle Scholar
  28. 28.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maher Chaouachi
    • 1
  • Imène Jraidi
    • 1
  • Claude Frasson
    • 1
  1. 1.HERON Lab, Computer Science DepartmentUniversity of MontrealCanada

Personalised recommendations