Advertisement

Enhancing Traditional Local Search Recommendations with Context-Awareness

  • Claudio Biancalana
  • Andrea Flamini
  • Fabio Gasparetti
  • Alessandro Micarelli
  • Samuele Millevolte
  • Giuseppe Sansonetti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6787)

Abstract

Traditional desktop search paradigm often does not fit mobile contexts. Common mobile devices provide impoverished mechanisms for text entry and small screens are able to offer only a limited set of options, therefore the users are not usually able to specify their needs. On a different note, mobile technologies have become part of the everyday life as shown by the estimate of one billion of mobile broadband subscriptions in 2011.

This paper describes an approach to make context-aware mobile interaction available in scenarios where users might be looking for categories of points of interest (POIs), such as cultural events and restaurants, through remote location-based services. Empirical evaluations shows how rich representations of user contexts has the chance to increase the relevance of the retrieved POIs.

Keywords

context-awareness local search location-based services mobile devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 335–336. ACM, New York (2008), http://doi.acm.org/10.1145/1454008.1454068 CrossRefGoogle Scholar
  2. 2.
    Al-Masri, E., Mahmoud, Q.H.: Smartcon: a context aware service discovery and selection mechanism using artificial neural networks. Int. J. Intell. Syst. Technol. Appl. 6, 144–156 (2009), http://portal.acm.org/citation.cfm?id=1497600.1497609 Google Scholar
  3. 3.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010)CrossRefGoogle Scholar
  4. 4.
    Console, L., Torre, I., Lombardi, I., Gioria, S., Surano, V.: Personalized and adaptive services on board a car: An application for tourist information. J. Intell. Inf. Syst. 21, 249–284 (2003), http://portal.acm.org/citation.cfm?id=939823.940055 CrossRefzbMATHGoogle Scholar
  5. 5.
    García-Crespo, A., Chamizo, J., Rivera, I., Mencke, M., Colomo-Palacios, R., Gómez-Berbís, J.M.: Speta: Social pervasive e-tourism advisor. Telemat. Inf. 26, 306–315 (2009), http://portal.acm.org/citation.cfm?id=1514442.1514676 CrossRefGoogle Scholar
  6. 6.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20, 422–446 (2002), http://doi.acm.org/10.1145/582415.582418 CrossRefGoogle Scholar
  7. 7.
    Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Building personal maps from gps data. Annals of the New York Academy of Sciences 1093(1), 249–265 (2005)CrossRefGoogle Scholar
  8. 8.
    Mokbel, M.F., Levandoski, J.J.: Toward context and preference-aware location-based services. In: MobiDE 2009: Proceedings of the Eighth ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp. 25–32. ACM, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Sohn, T., Li, K.A., Griswold, W.G., Hollan, J.D.: A diary study of mobile information needs. In: CHI 2008: Proceeding of the Twenty-sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 433–442. ACM, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claudio Biancalana
    • 1
  • Andrea Flamini
    • 1
  • Fabio Gasparetti
    • 1
  • Alessandro Micarelli
    • 1
  • Samuele Millevolte
    • 1
  • Giuseppe Sansonetti
    • 1
  1. 1.Artificial Intelligence LaboratoryROMA TRE UniversityRomeItaly

Personalised recommendations