Advertisement

Leveraging Collaborative Filtering to Tag-Based Personalized Search

  • Heung-Nam Kim
  • Majdi Rawashdeh
  • Abdulmotaleb El Saddik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6787)

Abstract

In recent years, social media services with social tagging have become tremendously popular. Because users are no longer mere consumers of content, social Web users have been overwhelmed by the huge numbers of social content available. For tailoring search results, in this paper, we look into the potential of social tagging in social media services. By leveraging collaborative filtering, we propose a new search model to enhance not only retrieval accuracy but also retrieval coverage. Our approach first computes latent preferences of users on tags from other similar users, as well as latent annotations of tags for items from other similar items. We then apply the latency of tags to a tag-based personalized ranking depending on individual users. Experimental results demonstrate the feasibility of our method for personalized searches in social media services.

Keywords

Personalized Search Social Tagging Collaborative Filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender systems: A Survey of the State-of-the-art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Bao, S., Wu, X., Fei, B., Xue, G., Su, Z., Yu, Y.: Optimizing Web Search Using Social Annotations. In: 16th International Conference on World Wide Web, pp. 501–510 (2007)Google Scholar
  3. 3.
    Bischoff, K., Firan, C.S., Nejdl, W., Paiu, R.: Can All Tags be Used for Search? In: 17th ACM Conference on Information and Knowledge Management, pp. 203–212 (2008)Google Scholar
  4. 4.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: 14th Annual Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)Google Scholar
  5. 5.
    Cai, Y., Zhang, M., Luo, D., Ding, C., Chakravarthy, S.: Low-order Tensor Decompositions for Social Tagging Recommendation. In: 4th ACM International Conference on Web Search and Data Mining, pp. 695–704 (2011)Google Scholar
  6. 6.
    Deshpande, M., Karypis, G.: Item-based Top-N Recommendation Algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)CrossRefGoogle Scholar
  7. 7.
    Golder, S.A., Huberman, B.A.: Usage Patterns of Collaborative Tagging Systems. Journal of Information Science 32(2), 198–208 (2006)CrossRefGoogle Scholar
  8. 8.
    Heymann, P., Koutrika, G., Garcia-Molina, H.: Can Social Bookmarking Improve Web Search? In: 1st International Conference on Web Search and Web Data Mining, pp. 195–206 (2008)Google Scholar
  9. 9.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: 3rd European Semantic Web Conference, pp. 411–426 (2006)Google Scholar
  10. 10.
    Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag Recommendations in Social Bookmarking Systems. AI Communications 21(4), 231–247 (2008)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Knowledge and Data Engineering Group, University of Kassel: Benchmark Folksonomy Data from BibSonomy, version of April 30th, http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
  12. 12.
    Levy, M., Sandler, M.: Learning Latent Semantic Models for Music from Social Tags. Journal of New Music Research 37(2), 137–150 (2008)CrossRefGoogle Scholar
  13. 13.
    Li, X., Guo, L., Zhao, Y.E.: Tag-based Social Interest Discovery. In: 17th International Conference on World Wide Web, pp. 675–684 (2008)Google Scholar
  14. 14.
    Liu, F., Yu, C.T., Meng, W.: Personalized Web Search for Improving Retrieval Effectiveness. IEEE Transactions on Knowledge and Data Engineering 16(1), 28–40 (2004)CrossRefGoogle Scholar
  15. 15.
    Ma, Z., Pant, G., Sheng, O.R.L.: Interest-based Personalized Search. ACM Transactions on Information Systems 25(1), Article 5 (2007)Google Scholar
  16. 16.
    Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Stumme, G.: Evaluating Similarity Measures for Emergent Semantics of Social Tagging. In: 18th International Conference on World Wide Web, pp. 641–650 (2009)Google Scholar
  17. 17.
    Rendle, S., Schmidt-Thieme, L.: Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation. In: 3rd ACM International Conference on Web Search and Data Mining, pp. 81–90 (2010)Google Scholar
  18. 18.
    Shaw, J.A., Fox, E.A.: Combination of Multiple Searches. In: Text REtrieval Conference, pp. 243–252 (1993)Google Scholar
  19. 19.
    Vallet, D., Cantador, I., Jose, J.M.: Personalizing Web Search with Folksonomy-based User and Document Profiles. In: 32nd European Conference on Information Retrieval, pp. 420–431 (2010)Google Scholar
  20. 20.
    Wetzker, R., Zimmermann, C., Bauckhage, C., Albayrak, S.: I Tag, You Tag: Translating Tags for Advanced User Models. In: 3rd ACM International Conference on Web Search and Data Mining, pp. 71–80 (2010)Google Scholar
  21. 21.
    Wu, X., Zhang, L., Yu, Y.: Exploring Social Annotations for the Semantic Web. In: 15th International Conference on World Wide Web, pp. 417–426 (2006)Google Scholar
  22. 22.
    Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring Folksonomy for Personalized Search. In: 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 155–162 (2008)Google Scholar
  23. 23.
    Zanardi, V., Capra, L.: Social Ranking: Uncovering Relevant Content Using Tag-based Recommender Systems. In: 2008 ACM Conference on Recommender Systems, pp. 51–58 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Heung-Nam Kim
    • 1
  • Majdi Rawashdeh
    • 1
  • Abdulmotaleb El Saddik
    • 1
  1. 1.School of Information Technology and EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations