Advertisement

Analyzing User Modeling on Twitter for Personalized News Recommendations

  • Fabian Abel
  • Qi Gao
  • Geert-Jan Houben
  • Ke Tao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6787)

Abstract

How can micro-blogging activities on Twitter be leveraged for user modeling and personalization? In this paper we investigate this question and introduce a framework for user modeling on Twitter which enriches the semantics of Twitter messages (tweets) and identifies topics and entities (e.g. persons, events, products) mentioned in tweets. We analyze how strategies for constructing hashtag-based, entity-based or topic-based user profiles benefit from semantic enrichment and explore the temporal dynamics of those profiles. We further measure and compare the performance of the user modeling strategies in context of a personalized news recommendation system. Our results reveal how semantic enrichment enhances the variety and quality of the generated user profiles. Further, we see how the different user modeling strategies impact personalization and discover that the consideration of temporal profile patterns can improve recommendation quality.

Keywords

user modeling twitter semantics personalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lerman, K., Ghosh, R.: Information contagion: an empirical study of spread of news on Digg and Twitter social networks. In: Cohen, Gosling (eds.) Proc. of 4th Int. Conf. on Weblogs and Social Media (ICWSM). AAAI Press, Menlo Park (2010)Google Scholar
  2. 2.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Rappa, et al. (eds.) Proc. of 19th Int. Conf. on World Wide Web (WWW), pp. 851–860. ACM, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Rappa, et al. (eds.) Proc. of 19th Int. Conf. on World Wide Web (WWW), pp. 591–600. ACM, New York (2010)CrossRefGoogle Scholar
  4. 4.
    Weng, J., Lim, E.P., Jiang, J., He, Q.: TwitterRank: Finding topic-sensitive influential Twitterers. In: Davison, et al. (eds.) Proc. of 3rd Int. Conf. on Web Search and Web Data Mining (WSDM), pp. 261–270. ACM, New York (2010)CrossRefGoogle Scholar
  5. 5.
    Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.: Time is of the essence: improving recency ranking using twitter data. In: Rappa, et al. (eds.) Proc. of 19th Int. Conf. on World Wide Web (WWW), pp. 331–340. ACM, New York (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experiments on recommending content from information streams. In: Mynatt, et al. (eds.) Proc. of 28th Int. Conf. on Human factors in Computing Systems (CHI), pp. 1185–1194. ACM, New York (2010)Google Scholar
  7. 7.
    Laniado, D., Mika, P.: Making sense of Twitter. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 470–485. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational Tagging in Twitter. In: Chignell, M.H., Toms, E. (eds.) Proc. of 21st Conf. on Hypertext and Hypermedia (HT), pp. 173–178. ACM, New York (2010)CrossRefGoogle Scholar
  9. 9.
    Koren, Y.: Collaborative filtering with temporal dynamics. In: Elder, et al. (eds.) Proc. of 15th Int. Conf. on Knowledge Discovery and Data Mining (KDD), pp. 447–456. ACM, Paris (2009)Google Scholar
  10. 10.
    Rowe, M., Stankovic, M., Laublet, P.: Mapping Tweets to Conference Talks: A Goldmine for Semantics. In: Passant, et al. (eds.) Workshop on Social Data on the Web (SDoW), Co-located with ISWC 2010, Shanghai, China, vol. 664, CEUR-WS.org (2010)Google Scholar
  11. 11.
    Abel, F., Gao, Q., Houben, G.J., Tao, K.: Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web. In: Antoniou, et al. (eds.) Extended Semantic Web Conference (ESWC), Springer, Heraklion (2011)Google Scholar
  12. 12.
    Abel, F., Gao, Q., Houben, G.J., Tao, K.: Supporting website: code, datasets and additional findings (2011), http://wis.ewi.tudelft.nl/umap2011/
  13. 13.
    Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: Rich, et al. (eds.) Proc. of 14th Int. Conf. on Intelligent User Interfaces (IUI), pp. 31–40. ACM, New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fabian Abel
    • 1
  • Qi Gao
    • 1
  • Geert-Jan Houben
    • 1
  • Ke Tao
    • 1
  1. 1.Web Information SystemsDelft University of TechnologyDelftthe Netherlands

Personalised recommendations