Efficient Processing of Multiple DTW Queries in Time Series Databases

  • Hardy Kremer
  • Stephan Günnemann
  • Anca-Maria Ivanescu
  • Ira Assent
  • Thomas Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6809)


Dynamic Time Warping (DTW) is a widely used distance measure for time series that has been successfully used in science and many other application domains. As DTW is computationally expensive, there is a strong need for efficient query processing algorithms. Such algorithms exist for single queries. In many of today’s applications, however, large numbers of queries arise at any given time. Existing DTW techniques do not process multiple DTW queries simultaneously, a serious limitation which slows down overall processing.

In this paper, we propose an efficient processing approach for multiple DTW queries. We base our approach on the observation that algorithms in areas such as data mining and interactive visualization incur many queries that share certain characteristics. Our solution exploits these shared characteristics by pruning database time series with respect to sets of queries, and we prove a lower-bounding property that guarantees no false dismissals. Our technique can be flexibly combined with existing DTW lower bounds or other single DTW query speed-up techniques for further runtime reduction. Our thorough experimental evaluation demonstrates substantial performance gains for multiple DTW queries.


  1. 1.
    Aach, J., Church, G.M.: Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6), 495–508 (2001)CrossRefGoogle Scholar
  2. 2.
    Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: SIGMOD, pp. 49–60 (1999)Google Scholar
  3. 3.
    Assent, I., Krieger, R., Afschari, F., Seidl, T.: The TS-Tree: Efficient time series search and retrieval. In: EDBT, pp. 252–263 (2008)Google Scholar
  4. 4.
    Assent, I., Kremer, H.: Robust adaptable video copy detection. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 380–385. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Assent, I., Wichterich, M., Krieger, R., Kremer, H., Seidl, T.: Anticipatory DTW for efficient similarity search in time series databases. PVLDB 2(1), 826–837 (2009)Google Scholar
  6. 6.
    Athitsos, V., Papapetrou, P., Potamias, M., Kollios, G., Gunopulos, D.: Approximate embedding-based subsequence matching of time series. In: SIGMOD, pp. 365–378 (2008)Google Scholar
  7. 7.
    Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD Rec. 30(3), 109–120 (2001)CrossRefGoogle Scholar
  8. 8.
    Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: AAAI Workshop on KDD, pp. 229–248 (1994)Google Scholar
  9. 9.
    Braunmüller, B., Ester, M., Kriegel, H.P., Sander, J.: Efficiently supporting multiple similarity queries for mining in metric databases. In: ICDE, pp. 256–267 (2000)Google Scholar
  10. 10.
    Brochhaus, C., Seidl, T.: Efficient index support for view-dependent queries on CFD data. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 57–74. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Chen, A.P., Lin, S.F., Cheng, Y.C.: Time registration of two image sequences by dynamic time warping. In: Proc. ICNSC, pp. 418–423 (2004)Google Scholar
  12. 12.
    Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and mining of time series data: experimental comparison of representations and distance measures. PVLDB 1(2), 1542–1552 (2008)Google Scholar
  13. 13.
    Faloutsos, C.: Searching Multimedia Databases by Content. Kluwer, Dordrecht (1996)CrossRefMATHGoogle Scholar
  14. 14.
    Jurca, O., Michel, S., Herrmann, A., Aberer, K.: Continuous query evaluation over distributed sensor networks. In: ICDE, pp. 912–923 (2010)Google Scholar
  15. 15.
    Kar, B., Dutta, P., Basu, T., Viel Hauer, C., Dittmann, J.: DTW based verification scheme of biometric signatures. In: IEEE ICIT, pp. 381–386 (2006)Google Scholar
  16. 16.
    Keogh, E.J.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417 (2002)Google Scholar
  17. 17.
    Keogh, E.J., Wei, L., Xi, X., Lee, S., Vlachos, M.: LB_Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In: VLDB, pp. 882–893 (2006)Google Scholar
  18. 18.
    Kim, S.W., Park, S., Chu, W.W.: An index-based approach for similarity search supporting time warping in large sequence databases. In: ICDE, pp. 607–614 (2001)Google Scholar
  19. 19.
    Kusy, B., Lee, H., Wicke, M., Milosavljevic, N., Guibas, L.J.: Predictive QoS routing to mobile sinks in wireless sensor networks. In: IPSN, pp. 109–120 (2009)Google Scholar
  20. 20.
    Ratanamahatana, C.A., Keogh, E.J.: Three myths about dynamic time warping data mining. In: SDM, pp. 506–510 (2005)Google Scholar
  21. 21.
    Ratanamahatana, C.A., Keogh, E.J.: Making time-series classification more accurate using learned constraints. In: SDM, pp. 11–22 (2004)Google Scholar
  22. 22.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust., Speech, Signal Processing 26(1), 43–49 (1978)CrossRefMATHGoogle Scholar
  23. 23.
    Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring under the time warping distance. In: ICDE, pp. 1046–1055 (2007)Google Scholar
  24. 24.
    Sakurai, Y., Yoshikawa, M., Faloutsos, C.: FTW: fast similarity search under the time warping distance. In: PODS, pp. 326–337 (2005)Google Scholar
  25. 25.
    Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis 11(5), 561–580 (2007)Google Scholar
  26. 26.
    Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor search. In: SIGMOD, pp. 154–165 (1998)Google Scholar
  27. 27.
    Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13(1), 23–52 (1988)CrossRefGoogle Scholar
  28. 28.
    Tok, W.H., Bressan, S.: Efficient and adaptive processing of multiple continuous queries. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 215–232. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB, pp. 194–205 (1998)Google Scholar
  30. 30.
    Yang, D., Rundensteiner, E.A., Ward, M.O.: A shared execution strategy for multiple pattern mining requests over streaming data. PVLDB 2(1), 874–885 (2009)Google Scholar
  31. 31.
    Zhu, Y., Shasha, D.: Warping indexes with envelope transforms for query by humming. In: SIGMOD, pp. 181–192 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hardy Kremer
    • 1
  • Stephan Günnemann
    • 1
  • Anca-Maria Ivanescu
    • 1
  • Ira Assent
    • 2
  • Thomas Seidl
    • 1
  1. 1.RWTH Aachen UniversityGermany
  2. 2.Aarhus UniversityDenmark

Personalised recommendations