Computational Aspects of Asynchronous Cellular Automata

  • Jérôme Chandesris
  • Alberto Dennunzio
  • Enrico Formenti
  • Luca Manzoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

Cellular Automata (CA) are a computational model widely used in many scientific fields. A CA consists of identical finite automata arranged over a regular lattice (i.e. every configuration of a CA is an element of A where A is a finite set of local states). Each automaton updates its state on the basis of its own state and the one of its neighbors according to a local rule. All updates are synchronous.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amar, P., Bernot, G., Norris, V.: Hsim: a simulation programme to study large assemblies of proteins. Journal of Biological Physics and Chemistry 4, 79–84 (2004)CrossRefGoogle Scholar
  2. 2.
    Chandesris, J., Dennunzio, A., Formenti, E., Manzoni, L.: Computational aspects of asynchronous cellular automata (2010), http://arxiv.org/find/all/1/all:+239813/0/1/0/all/0/1
  3. 3.
    Chopard, B.: Modelling physical systems by cellular automata. In: Rozenberg, G., et al. (ed.) Handbook of Natural Computing: Theory, Experiments, and Applications. Springer, Heidelberg (to appear, 2011)Google Scholar
  4. 4.
    Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. J. Comput. Syst. Sci. 70, 201–220 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Nakamura, K.: Asynchronous cellular automata and their computational ability. Systems, Computers, Control 5, 58–66 (1974)MathSciNetGoogle Scholar
  6. 6.
    Nehaniv, C.L.: Evolution in asynchronous cellular automata. Artificial Life VIII, 65–73 (2002)Google Scholar
  7. 7.
    Ollinger, N.: Universalities in cellular automata. In: Rozenberg, G., et al. (ed.) Handbook of Natural Computing: Theory, Experiments, and Applications, Springer, Heidelberg (to appear, 2011)Google Scholar
  8. 8.
    Regnault, D., Schabanel, N., Thierry, E.: Progresses in the analysis of stochastic 2d cellular automata: A study of asynchronous 2d minority. Theoretical Computer Science 410, 4844–4855 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)CrossRefGoogle Scholar
  10. 10.
    Worsch, T.: A note on (intrinsically?) universal asynchronous cellular automata (2010) (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jérôme Chandesris
    • 2
  • Alberto Dennunzio
    • 2
  • Enrico Formenti
    • 2
  • Luca Manzoni
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano–BicoccaMilanoItaly
  2. 2.Laboratoire I3SUniversité Nice-Sophia AntipolisSophia AntipolisFrance

Personalised recommendations