Advertisement

A Sufficient Condition for Erasing Productions to Be Avoidable

  • Georg Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

In each grammar model, it is an important question whether erasing productions are necessary to generate all languages. Using the concept of grammars with control languages by Salomaa, which offers a uniform treatment of a variety of grammar models, we present a condition on the class of control languages that guarantees that erasing productions are avoidable in the resulting grammar model. On the one hand, this generalizes the previous result that in Petri net controlled grammars, erasing productions can be eliminated. On the other hand, it allows us to infer that the same is true for vector grammars.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V.: Indexed grammars—an extension of context-free grammars. Journal of the ACM 15, 647–671 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cremers, A.B., Mayer, O.: On matrix languages. Information and Control 23(1), 86–96 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 101–154. Springer, Berlin (1997)CrossRefGoogle Scholar
  5. 5.
    Dassow, J., Turaev, S.: Petri net controlled grammars: the case of special petri nets. Journal of Universal Computer Science 15(14), 2808–2835 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dassow, J., Turaev, S.: Petri net controlled grammars: the power of labeling and final markings. Romanian Journal of Information Science and Technology 12(2), 191–207 (2009)Google Scholar
  7. 7.
    Fernau, H., Stiebe, R.: Sequential grammars and automata with valences. Theoretical Computer Science 276, 377–405 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ginsburg, S., Spanier, E.H.: Control sets on grammars. Mathematical Systems Theory 2(2), 159–177 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Salomaa, A.: On grammars with restricted use of productions. Annales Academiæ Scientiarum Fennicæ. Series A I. Mathematica 454 (1969)Google Scholar
  10. 10.
    Zetzsche, G.: On erasing productions in random context grammars. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 175–186. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Zetzsche, G.: Toward understanding the generative capacity of erasing rules in matrix grammars. International Journal of Foundations of Computer Science 22, 411–426 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georg Zetzsche
    • 1
  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations