Towards Dual Approaches for Learning Context-Free Grammars Based on Syntactic Concept Lattices

  • Ryo Yoshinaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)

Abstract

Recent studies on grammatical inference have demonstrated the benefits of “distributional learning” for learning context-free and context-sensitive languages. Distributional learning models and exploits the relation between strings and contexts in the language of the learning target. There are two main approaches. One, which we call primal, constructs nonterminals whose language is characterized by strings. The other, which we call dual, uses contexts to characterize the language of a nonterminal of the conjecture grammar. This paper demonstrates and discusses the duality of those approaches by presenting some powerful learning algorithms along the way.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In: Boutilier, C. (ed.) IJCAI, pp. 1004–1009 (2009)Google Scholar
  2. 2.
    Clark, A.: A learnable representation for syntax using residuated lattices. In: Proceedings of the 14th Conference on Formal Grammar, Bordeaux, France (2009)Google Scholar
  3. 3.
    Clark, A.: Three learnable models for the description of language. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 16–31. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Clark, A.: Distributional learning of some context-free languages with a minimally adequate teacher. In: [17], pp. 24–37 (2010)Google Scholar
  5. 5.
    Clark, A.: Learning context free grammars with the syntactic concept lattice. In: [17], pp. 38–51 (2010)Google Scholar
  6. 6.
    Clark, A.: Towards general algorithms for grammatical inference. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS, vol. 6331, pp. 11–30. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Clark, A.: Efficient, correct, unsupervised learning of context-sensitive languages. In: Proceedings of CoNLL. Association for Computational Linguistics, Uppsala (2010)Google Scholar
  8. 8.
    Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)MathSciNetMATHGoogle Scholar
  9. 9.
    Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently learn context-free languages. Journal of Machine Learning Research 11, 2707–2744 (2010)MathSciNetMATHGoogle Scholar
  10. 10.
    Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fundam. Inform. 51(4), 339–368 (2002)MathSciNetMATHGoogle Scholar
  11. 11.
    Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. Theor. Comput. Sci. 313(2), 267–294 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Shirakawa, H., Yokomori, T.: Polynomial-time MAT learning of c-deterministic context-free grammars. Transaction of Information Processing Society of Japan 34, 380–390 (1993)Google Scholar
  13. 13.
    Yoshinaka, R.: Identification in the limit of k,l-substitutable context-free languages. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 266–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional substitutability from positive data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278–292. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Yoshinaka, R.: Polynomial-time identification of multiple context-free languages from positive data and membership queries. In: [17], pp. 230–244 (2010)Google Scholar
  16. 16.
    Yoshinaka, R., Clark, A.: Polynomial time learning of some multiple context-free languages with a minimally adequate teacher. In: Proceedings of the 15th Conference on Formal Grammar, Copenhagen, Denmark (2010)Google Scholar
  17. 17.
    Sempere, J.M., García, P. (eds.): ICGI 2010. LNCS, vol. 6339. Springer, Heidelberg (2010)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ryo Yoshinaka
    • 1
  1. 1.ERATO MINATO Discrete Structure Manipulation System ProjectJapan Science and Technology AgencyJapan

Personalised recommendations