Property-Dependent Reductions for the Modal Mu-Calculus

  • Radu Mateescu
  • Anton Wijs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6823)


When analyzing the behavior of finite-state concurrent systems by model checking, one way of fighting state explosion is to reduce the model as much as possible whilst preserving the properties under verification. We consider the framework of action-based systems, whose behaviors can be represented by labeled transition systems (Ltss), and whose temporal properties of interest can be formulated in modal μ-calculus (L μ ). First, we determine, for any L μ formula, the maximal set of actions that can be hidden in the Lts without changing the interpretation of the formula. Then, we define \(L_\mu^{\it dsbr}\), a fragment of L μ which is compatible with divergence-sensitive branching bisimulation. This enables us to apply the maximal hiding and to reduce the Lts on-the-fly using divergence-sensitive τ-confluence during the verification of any \(L_\mu^{\it dsbr}\) formula. The experiments that we performed on various examples of communication protocols and distributed systems show that this reduction approach can significantly improve the performance of on-the-fly verification.


Model Check Label Transition System State Formula Propositional Dynamic Logic Action Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, H.R.: Model checking and boolean graphs. Theoretical Computer Science 126(1), 3–30 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baeten, J.C.M.: A Brief History of Process Algebra. Theoretical Computer Science 335(2-3), 131–146 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barbuti, R., de Francesco, N., Santone, A., Vaglini, G.: Selective mu-calculus and formula-based equivalence of transition systems. Journal of Computer and System Science 59(3), 537–556 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the alternation-free modal mu-calculus. Formal Methods in System Design 2(2), 121–147 (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten years of performance evaluation for concurrent systems using CADP. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 128–142. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: Proc. of ICSE 1999 (May 1999)Google Scholar
  9. 9.
    Fantechi, A., Gnesi, S., Ristori, G.: From ACTL to Mu-Calculus. In: Proc. of the ERCIM Workshop on Theory and Practice in Verification, IEI-CNR (1992)Google Scholar
  10. 10.
    Fernandez, J.-C., Mounier, L.: On the fly verification of behavioural equivalences and preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, Springer, Heidelberg (1992)CrossRefGoogle Scholar
  11. 11.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194–211 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Garavel, H., Lang, F.: Svl: a scripting language for compositional verification. In: Proc. of FORTE 2001, IFIP, pp. 377–392. Kluwer Academic Publishers, Boston (August 2001); Full Version available as INRIA Research Report RR-4223Google Scholar
  13. 13.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: Cadp 2010: A toolbox for the construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    van Glabbeek, R.J., Luttik, B., Trčka, N.: Branching Bisimilarity with Explicit Divergence. Fundamenta Informaticae 93(4), 371–392 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM 43(3), 555–600 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Groote, J.F., Sellink, M.P.A.: Confluence for process verification. Theoretical Computer Science 170(1-2), 47–81 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)zbMATHGoogle Scholar
  18. 18.
    Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 333–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mateescu, R.: On-the-fly state space reductions for weak equivalences. In: Proc. of FMICS 2005, pp. 80–89. ACM Computer Society Press, New York (2005)Google Scholar
  20. 20.
    Mateescu, R.: Caesar_solve: A generic library for on-the-fly resolution of alternation-free boolean equation systems. Springer International Journal on Software Tools for Technology Transfer (STTT) 8(1), 37–56 (2006); Full version available as INRIA Research Report RR-5948 (July 2006) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular alternation-free mu-calculus. Science of Computer Programming 46(3), 255–281 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Mateescu, R., Wijs, A.: Efficient on-the-fly computation of weak tau-confluence. Research Report RR-7000, INRIA (2009)Google Scholar
  24. 24.
    Mateescu, R., Wijs, A.: Sequential and distributed on-the-fly computation of weak tau-confluence. Science of Computer Programming (2011) (to appear)Google Scholar
  25. 25.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  26. 26.
    De Nicola, R., Vaandrager, F.W.: Action versus State Based Logics for Transition Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  27. 27.
    Pace, G.J., Lang, F., Mateescu, R.: Calculating τ-confluence compositionally. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 446–459. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Stirling, C.: Modal and Temporal Properties of Processes. Springer, Heidelburg (2001)Google Scholar
  29. 29.
    Streett, R.: Propositional dynamic logic of looping and converse. Information and Control (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Radu Mateescu
    • 1
  • Anton Wijs
    • 2
  1. 1.Inria Grenoble – Rhône-Alpes / Vasy project-team / Lig, InovalléeMontbonnotFrance
  2. 2.Technische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations