Advertisement

Clitic Movement in Pregroup Grammar: A Cross-Linguistic Approach

  • Claudia Casadio
  • Mehrnoosh Sadrzadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6618)

Abstract

The calculus of pregroups is a kind of type (or categorial) grammar introduced by Lambek [17] for the analysis and computation of natural languages; it has been applied to a wide range of languages from English and German, to French and Italian, and many others [11]. Like Lambek’s Syntactic Calculus, pregroups are non-commutative structures, but the syntax of natural languages shows also the presence of cyclic patterns, in particular those exhibited by the phenomenon known in the literature as movement of clitic pronouns in different languages. In this paper we propose an extension of the calculus of pregroups including two cyclic rules and use them to formally analyze movement of clitic clusters in Persian, French, and Italian. In the final part of the paper, we discuss the relations of these rules to Yetter’s and Abrusci’s cyclic rules for Linear Logic.

Keywords

Type Grammars Pregroup Clitic Movement Cyclic Rules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrusci, M.: Classical Conservative Extensions of Lambek Calculus. Studia Logica 71, 277–314 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bargelli, D., Lambek, J.: An Algebraic Approach to French Sentence Structure. In: De Groote, P., Morrill, G., Retoré, C. (eds.) Logical Aspects of Computational Linguistics. LACL, vol. 2099, pp. 62–78. Springer, Berlin (2001)CrossRefGoogle Scholar
  3. 3.
    Bargelli, D., Lambek, J.: An Algebraic Appraoch to Arabic Sentence Structure. Linguistic Analysis 31 (2001)Google Scholar
  4. 4.
    Barr, M.: On Subgroups of The Lambek Pregroup. Theory and Application of Categories 12(8), 262–269 (2004)MathSciNetMATHGoogle Scholar
  5. 5.
    Buszkowski, W.: Lambek Grammars Based on Pregroups. In: De Groote, P., Morrill, G., Retoré, C. (eds.) Logical Aspects of Computational Linguistics, LACL, vol. 2099, pp. 95–109. Springer, Berlin (2001)CrossRefGoogle Scholar
  6. 6.
    Buszkowski, W.: Type Logics and Pregroups. Studia Logica 87(2/3), 145–169 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Casadio, C.: Applying Pregroups to Italian Statements and Questions. Studia Logica 87(2/3), 253–268 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Casadio, C.: Agreement and Cliticization in Italian: A Pregroup Analysis. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 166–177. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Casadio, C., Lambek, J.: An Algebraic Analysis of Clitic Pronouns in Italian. In: De Groote, P., Morrill, G., Retoré, C. (eds.) Logical Aspects of Computational Linguistics, LACL, vol. 2099, pp. 110–124. Springer, Berlin (2001)CrossRefGoogle Scholar
  10. 10.
    Casadio, C., Lambek, J.: A Tale of Four Grammars. Studia Logica 71(3), 315–329 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Casadio, C., Lambek, J. (eds.): Recent Computational Algebraic Approaches to Morphology and Syntax. Polimetrica, Milan (2008)Google Scholar
  12. 12.
    Francez, N., Kaminski, M.: Commutation-Augmented Pregroup Grammars and Mildly Context-Sensitive Languages. Studia Logica 87(2/3), 295–321 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ghanbarpur, R.: Pregroup Analysis of an Advanced Fragment of Persian Grammar. M.Sc. Thesis, Sharif University of Technology, Tehran, Iran (April 2009)Google Scholar
  14. 14.
    Kiślak-Malinowska, A.: Pregroups as a tool for typing relative pronouns in Polish. In: Proceedings of Categorial Grammars. An Efficient Tool for Natural Language Processing, Montpellier, pp. 114–128 (2004)Google Scholar
  15. 15.
    Kiślak-Malinowska, A.: Polish Language in Terms of Pregroups. In: Casadio, C., Lambek, J. (eds.) Recent Computational Algebraic Approaches to Morphology and Syntax, Polimetrica, Milan, pp. 145–172 (2008)Google Scholar
  16. 16.
    Lambek, J.: The Mathematics of Sentence Structure. American Mathematics Monthly 65, 154–169 (1958)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lambek, J.: Type Grammar Revisited. In: Lecomte, A., Perrier, G., Lamarche, F. (eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Lambek, J.: Type Grammars as Pregroups. Grammars 4(1), 21–39 (2001)CrossRefMATHGoogle Scholar
  19. 19.
    Lambek, J.: A computational Algebraic Approach to English Grammar. Syntax 7(2), 128–147 (2004)CrossRefGoogle Scholar
  20. 20.
    Lambek, J.: From Word to Sentence. A Computational Algebraic Approach to Grammar. Polimetrica, Monza (2008)MATHGoogle Scholar
  21. 21.
    Lambek, J.: Exploring Feature Agreement in French with Parallel Pregroup Computations. Journal of Logic, Language and Information 19, 75–88 (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Morrill, G.: Categorial Grammar. Logical Syntax, Semantics, and Processing. Oxford University Press, Oxford (2010)Google Scholar
  23. 23.
    Moortgat, M.: Categorical Type Logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 93–177. Elsevier, Amsterdam (1997)CrossRefGoogle Scholar
  24. 24.
    Moortgat, M.: Symmetric Categorial Grammar. Journal of Philosophical Logic 38, 681–710 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Preller, A., Lambek, J.: Free Compact 2-Categories. Mathematical Structures in Computer Science 17, 309–340 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Preller, A., Sadrzadeh, M.: Semantic Vector Space and Functional Models for Pregroup Grammars. Journal of Logic, Language and Information (t.a.)Google Scholar
  27. 27.
    Ryding, K.C.: A Reference Grammar of Modern Standard Arabic. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  28. 28.
    Sadrzadeh, M.: Pregroup Analysis of Persian Sentences. In: [11]Google Scholar
  29. 29.
    Stabler, E.P.: Tupled Pregroup Grammars. In: Casadio, C., Lambek, J. (eds.) Recent Computational Algebraic Approaches to Morphology and Syntax, Milan, Polimetrica, pp. 23–52 (2008)Google Scholar
  30. 30.
    Yetter, D.N.: Quantales and (non-Commutative) Linear Logic. Journal of Symbolic Logic 55 (1990)Google Scholar
  31. 31.
    Wanner, D.: The Development of Romance Clitic Pronouns. In: From Latin to Old Romance. Mouton de Gruyter, Amsterdam (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claudia Casadio
    • 1
  • Mehrnoosh Sadrzadeh
    • 2
  1. 1.Dept. of PhilosophyChieti UniversityItaly
  2. 2.Computing LaboratoryOxford UniversityUK

Personalised recommendations