Ordinal Completeness of Bimodal Provability Logic GLB

  • Lev Beklemishev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6618)


Bimodal provability logic GLB, introduced by G. Japaridze, currently plays an important role in the applications of provability logic to proof-theoretic analysis. Its topological semantics interprets diamond modalities as derived set operators on a bi-scattered bitopological space. We study the question of completeness of this logic w.r.t. the most natural space of this kind, that is, w.r.t. an ordinal α equipped with the interval topology and with the so-called club topology. We show that, assuming the axiom of constructibility, GLB is complete for any \(\alpha \geq\aleph_\omega \). On the other hand, from the results of A. Blass it follows that, assuming the consistency of “there is a Mahlo cardinal,” it is consistent with ZFC that GLB is incomplete w.r.t. any such space. Thus, the question of completeness of GLB w.r.t. natural ordinal spaces turns out to be independent of ZFC.


Topological Derivative Kripke Frame Kripke Semantic Provability Logic Interval Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abashidze, M.: Ordinal completeness of the Gödel-Löb modal system. In: Intensional Logics and the Logical Structure of Theories, pp. 49–73. Metsniereba, Tbilisi (1985) (in Russian)Google Scholar
  2. 2.
    Artemov, S.N., Beklemishev, L.D.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 13, pp. 229–403. Kluwer, Dordrecht (2004)Google Scholar
  3. 3.
    Beklemishev, L.D.: Provability algebras and proof-theoretic ordinals, I. Annals of Pure and Applied Logic 128, 103–123 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beklemishev, L.D.: Reflection principles and provability algebras in formal arithmetic. Uspekhi Matematicheskikh Nauk 60(2), 3–78 (2005) (in Russian); English translation in: Russian Mathematical Surveys 60(2), 197–268 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beklemishev, L.D.: The Worm Principle. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002, March 2003. Lecture Notes in Logic, vol. 27, pp. 75–95. AK Peters (2006); Preprint: Logic Group Preprint Series 219, Utrecht University (March 2003)Google Scholar
  6. 6.
    Beklemishev, L.D.: Kripke semantics for provability logic GLP. Annals of Pure and Applied Logic 161, 756–774 (2010); Preprint: Logic Group Preprint Series 260, University of Utrecht (November 2007), MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Beklemishev, L.D.: On the Craig interpolation and the fixed point property for GLP. Logic Group Preprint Series 262, University of Utrecht (December 2007),
  8. 8.
    Beklemishev, L.D., Bezhanishvili, G., Icard, T.: On topological models of GLP. In: Schindler, R. (ed.) Ways of Proof Theory, Ontos Mathematical Logic, pp. 133–152. Ontos Verlag, Heusendamm bei Frankfurt, Germany (2010); Preprint: Logic Group Preprint Series 278, University of Utrecht (August 2009),
  9. 9.
    Beklemishev, L.D., Joosten, J., Vervoort, M.: A finitary treatment of the closed fragment of Japaridze’s provability logic. Journal of Logic and Computation 15(4), 447–463 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bezhanishvili, G., Esakia, L., Gabelaia, D.: Some results on modal axiomatization and definability for topological spaces. Studia Logica 81, 325–355 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Blass, A.: Infinitary combinatorics and modal logic. Journal of Symbolic Logic 55(2), 761–778 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Boolos, G.: The analytical completeness of Dzhaparidze’s polymodal logics. Annals of Pure and Applied Logic 61, 95–111 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  14. 14.
    Carlucci, L.: Worms, gaps and hydras. Mathematical Logic Quarterly 51(4), 342–350 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Esakia, L.: Diagonal constructions, Löb’s formula and Cantor’s scattered space. In: Studies in Logic and Semantics, pp. 128–143. Metsniereba, Tbilisi (1981) (in Russian)Google Scholar
  16. 16.
    Esakia, L.: Intuitionistic logic and modality via topology. Annals of Pure and Applied Logic 127, 155–170 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Icard III., T.F.: A topological study of the closed fragment of GLP. Journal of Logic and Computation (2009) (Advance Access published online on August 12, 2009), doi:10.1093/logcom/exp043Google Scholar
  18. 18.
    Ignatiev, K.N.: On strong provability predicates and the associated modal logics. The Journal of Symbolic Logic 58, 249–290 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Japaridze, G.K.: The modal logical means of investigation of provability. Thesis in Philosophy, Moscow (1986) (in Russian)Google Scholar
  20. 20.
    Jech, T.: Set Theory. The Third Millenium Edition. Springer, Heidelberg (2002)Google Scholar
  21. 21.
    Jensen, R.B.: The fine structure of the constructible hierarchy. Annals of Mathematical Logic 4, 229–308 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    McKinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45, 141–191 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Simmons, H.: Topological aspects of suitable theories. Proc. Edinburgh Math. Soc. 19(2), 383–391 (1975)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lev Beklemishev
    • 1
  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations