Improved Distance Queries in Planar Graphs

  • Yahav Nussbaum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)


There are several known data structures that answers distance queries between two arbitrary vertices in a planar graph. The tradeoff is among preprocessing time, storage space and query time. In this paper we present three data structures that answer such queries, each with its own advantage over previous data structures. The first one improves the query time of data structures of linear space. The second improves the preprocessing time of data structures with a space bound of O(n4/3) or higher while matching the best known query time. The third data structure improves the query time for a similar range of space bounds, at the expense of a longer preprocessing time. The techniques that we use include modifying the parameters of planar graph decompositions, combining the different advantages of existing data structures, and using the Monge property for finding minimum elements of matrices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-searching algorithms. Algorithmica 2, 195–208 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aggarwal, A., Klawe, M.: Applications of generalized matrix searching to geometric algorithms. Discrete Appl. Math. 27, 3–23 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H., Zaroliagis, C.D.: Planar spanners and approximate shortest path queries among obstacles in the plane. In: Díaz, J., Serna, M.J. (eds.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Cabello, S.: Many distances in planar graphs. Algorithmica (to appear)Google Scholar
  5. 5.
    Chen, D.Z., Xu, J.: Shortest path queries in planar graphs. In: STOC 2000, pp. 469–478. ACM, New York (2000)Google Scholar
  6. 6.
    Djidjev, H.N.: Efficient algorithms for shortest path queries in planar digraphs. In: d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS, vol. 1197, pp. 151–165. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Djidjev, H.N., Venkatesan, S.M.: Planarization of graphs embedded on surfaces. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 62–72. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci. 72, 868–889 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Feuerstein, E., Marchetti-Spaccamela, A.: Dynamic algorithms for shortest paths in planar graphs. Theor. Comput. Sci. 116, 359–371 (1993)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16, 1004–1022 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55, 3–23 (1997)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hutchinson, J.P., Miller, G.L.: Deleting vertices to make graphs of positive genus planar. In: Discrete Algorithms and Complexity Theory, pp. 81–98. Academic Press, Boston (1986)Google Scholar
  13. 13.
    Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA 2005, pp. 145–155. SIAM, Philadelphia (2005)Google Scholar
  14. 14.
    Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans. Algorithms 6, 1–18 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. on Appl. Math. 36, 177–189 (1979)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32, 265–279 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mozes, S., Sommer, C.: Exact Distance Oracles for Planar Graphs, arXiv:1011.5549v2 (2010)Google Scholar
  18. 18.
    Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths in o(nlog2 n/loglogn) time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 206–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yahav Nussbaum
    • 1
  1. 1.The Blavatnik School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations