Counting Plane Graphs: Flippability and Its Applications

  • Michael Hoffmann
  • Micha Sharir
  • Adam Sheffer
  • Csaba D. Tóth
  • Emo Welzl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)


We generalize the notions of flippable and simultaneously flippable edges in a triangulation of a set S of points in the plane into so called pseudo-simultaneously flippable edges.

We prove a worst-case tight lower bound for the number of pseudo-simultaneously flippable edges in a triangulation in terms of the number of vertices. We use this bound for deriving new upper bounds for the maximal number of crossing-free straight-edge graphs that can be embedded on any fixed set of N points in the plane. We obtain new upper bounds for the number of spanning trees and forests as well. Specifically, let tr(N) denote the maximum number of triangulations on a set of N points in the plane. Then we show (using the known bound tr(N) < 30 N ) that any N-element point set admits at most 6.9283 N ·tr(N) < 207.85 N crossing-free straight-edge graphs, O(4.8795 N ) ·tr(N) = O(146.39 N ) spanning trees, and O(5.4723 N ) ·tr(N) = O(164.17 N ) forests. We also obtain upper bounds for the number of crossing-free straight-edge graphs that have fewer than cN or more than cN edges, for a constant parameter c, in terms of c and N.


Convex Hull Span Tree Plane Graph Convex Polygon Geometric Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O., Hackl, T., Huemer, Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane geometric graphs. Graph. Comb. 23(1), 67–84 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs. Annals Discrete Math. 12, 9–12 (1982)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. Theory Appl. 42(1), 60–80 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles in planar graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 97–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Buchin, K., Schulz, A.: On the number of spanning trees a planar graph can have. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 110–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Denny, M.O., Sohler, C.A.: Encoding a triangulation as a permutation of its point set. In: Proc. 9th Canadian Conf. on Computational Geometry, pp. 39–43 (1997)Google Scholar
  8. 8.
    Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum multiplicity of some common geometric graphs. In: Proc. 28th International Symposium on Theoretical Aspects of Computer Science, pp. 637–648 (2011)Google Scholar
  9. 9.
    Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Du, D.A., Hwang, F.K. (eds.) Euclidean Geometry and Computers, pp. 193–233. World Scientific Publishing Co., New York (1992)CrossRefGoogle Scholar
  10. 10.
    Galtier, J., Hurtado, F., Noy, M., Pérennes, S., Urrutia, J.: Simultaneous edge flipping in triangulations. Internat. J. Comput. Geom. Appl. 13(2), 113–133 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    García-Lopez, J., Nicolás, M.: Planar point sets with large minimum convex partitions. In: Proc. 22nd Euro. Workshop Comput. Geom., Delphi, pp. 51–54 (2006)Google Scholar
  12. 12.
    García, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free subgraphs of K N. Comput. Geom. Theory Appl. 16(4), 211–221 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. Springer, Berlin (2009)Google Scholar
  14. 14.
    Hoffmann, M., Sharir, M., Sheffer, A., Tóth, C.D., Welzl, E.: Counting Plane Graphs: Flippability and its Applications, arXiv:1012.0591Google Scholar
  15. 15.
    Hosono, K.: On convex decompositions of a planar point set. Discrete Math. 309, 1714–1717 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22, 333–346 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lovász, L., Plummer, M.: Matching theory. North Holland, Amsterdam (1986)zbMATHGoogle Scholar
  18. 18.
    Razen, A., Snoeyink, J., Welzl, E.: Number of crossing-free geometric graphs vs. triangulations. Electronic Notes in Discrete Math. 31, 195–200 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ribó, A.: Realizations and Counting Problems for Planar Structures: Trees and Linkages, Polytopes and Polyominos, Ph.D. thesis. Freie Universität Berlin (2005)Google Scholar
  20. 20.
    Rote, G.: The number of spanning trees in a planar graph. Oberwolfach Reports 2, 969–973 (2005)Google Scholar
  21. 21.
    Santos, F., Seidel, R.: A better upper bound on the number of triangulations of a planar point set. J. Combinat. Theory Ser. A 102(1), 186–193 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electr. J. Comb. 18(1) (2011), arXiv:0911.3352v2Google Scholar
  23. 23.
    Sharir, M., Welzl, E.: Random triangulations of planar point sets. In: Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 860–869 (2006)Google Scholar
  24. 24.
    Souvaine, D.L., Tóth, C.D., Winslow, A.: Simultaneously flippable edges in triangulations. In: Proc. XIV Spanish Meeting on Comput. Geom. (to appear, 2011)Google Scholar
  25. 25.
    Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  26. 26.
    Urrutia, J.: Open problem session. In: Proc. 10th Canadian Conference on Computational Geometry. McGill University, Montréal (1998)Google Scholar
  27. 27.
    Wagner, K.: Bemerkungen zum Vierfarbenproblem. J. Deutsch. Math.-Verein. 46, 26–32 (1936)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Hoffmann
    • 1
  • Micha Sharir
    • 2
    • 3
  • Adam Sheffer
    • 2
  • Csaba D. Tóth
    • 4
  • Emo Welzl
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZürichZürichSwitzerland
  2. 2.Blavatnik School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  4. 4.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada

Personalised recommendations