Advertisement

Searching in Dynamic Tree-Like Partial Orders

  • Brent Heeringa
  • Marius Cătălin Iordan
  • Louis Theran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)

Abstract

We give the first data structure for the problem of maintaining a dynamic set of n elements drawn from a partially ordered universe described by a tree. We define the Line-Leaf Tree, a linear-sized data structure that supports the operations: insert; delete; test membership; and predecessor. The performance of our data structure is within an O(logw)-factor of optimal. Here w ≤ n is the width of the partial-order—a natural obstacle in searching a partial order.

Keywords

Partial Order Search Tree Hasse Diagram Binary Search Tree Actual Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM J. Comput. 28(6), 2090–2102 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.S.: Searching in random partially ordered sets. Theor. Comput. Sci. 321(1), 41–57 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in linear time. In: SODA 2008: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1096–1105. Society for Industrial and Applied Mathematics, Philadelphia (2008)Google Scholar
  4. 4.
    Onak, K., Parys, P.: Generalization of binary search: Searching in trees and forest-like partial orders. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 379–388. IEEE Computer Society, Washington, DC, USA (2006)CrossRefGoogle Scholar
  5. 5.
    Dereniowski, D.: Edge ranking and searching in partial orders. Discrete Appl. Math. 156(13), 2493–2500 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Jacobs, T., Cicalese, F., Laber, E.S., Molinaro, M.: On the complexity of searching in trees: Average-case minimization. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 527–539. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Laber, E., Molinaro, M.: An approximation algorithm for binary searching in trees. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 459–471. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selection in posets. In: SODA 2009: Proceedings of the Nineteenth Annual ACM-SIAM SODA, pp. 392–401. SIAM, Philadelphia (2009)Google Scholar
  9. 9.
    Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selection in posets. CoRR abs/0707.1532 (2007)Google Scholar
  10. 10.
    Heeringa, B., Iordan, M.C., Theran, L.: Searching in dynamic tree-like partial orders. CoRR abs/1010.1316 (2010)Google Scholar
  11. 11.
    Laber, E., Nogueira, L.T.: Fast searching in trees. Electronic Notes in Discrete Mathematics 7, 1–4 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Meir, A., Moon, J.W.: On the altitude of nodes in random trees. Canadian Journal of Mathematics 30, 997–1015 (1978)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bergeron, F., Flajolet, P., Salvy, B.: Varieties of increasing trees. In: Raoult, J.-C. (ed.) CAAP 1992. LNCS, vol. 581, pp. 24–48. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  14. 14.
    Drmota, M.: The height of increasing trees. Annals of Combinatorics 12, 373–402 (2009), doi:10.1007/s00026-009-0009-xMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Grimmett, G.R.: Random labelled trees and their branching networks. J. Austral. Math. Soc. Ser. A 30(2), 229–237 (1980/1981)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Brent Heeringa
    • 1
  • Marius Cătălin Iordan
    • 2
  • Louis Theran
    • 3
  1. 1.Dept. of Computer ScienceWilliams CollegeUSA
  2. 2.Dept. of Computer ScienceStanford UniversityUSA
  3. 3.Dept. of MathematicsTemple UniversityUSA

Personalised recommendations