Searching in Dynamic Tree-Like Partial Orders

  • Brent Heeringa
  • Marius Cătălin Iordan
  • Louis Theran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)


We give the first data structure for the problem of maintaining a dynamic set of n elements drawn from a partially ordered universe described by a tree. We define the Line-Leaf Tree, a linear-sized data structure that supports the operations: insert; delete; test membership; and predecessor. The performance of our data structure is within an O(logw)-factor of optimal. Here w ≤ n is the width of the partial-order—a natural obstacle in searching a partial order.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM J. Comput. 28(6), 2090–2102 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.S.: Searching in random partially ordered sets. Theor. Comput. Sci. 321(1), 41–57 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in linear time. In: SODA 2008: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1096–1105. Society for Industrial and Applied Mathematics, Philadelphia (2008)Google Scholar
  4. 4.
    Onak, K., Parys, P.: Generalization of binary search: Searching in trees and forest-like partial orders. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 379–388. IEEE Computer Society, Washington, DC, USA (2006)CrossRefGoogle Scholar
  5. 5.
    Dereniowski, D.: Edge ranking and searching in partial orders. Discrete Appl. Math. 156(13), 2493–2500 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Jacobs, T., Cicalese, F., Laber, E.S., Molinaro, M.: On the complexity of searching in trees: Average-case minimization. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 527–539. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Laber, E., Molinaro, M.: An approximation algorithm for binary searching in trees. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 459–471. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selection in posets. In: SODA 2009: Proceedings of the Nineteenth Annual ACM-SIAM SODA, pp. 392–401. SIAM, Philadelphia (2009)Google Scholar
  9. 9.
    Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selection in posets. CoRR abs/0707.1532 (2007)Google Scholar
  10. 10.
    Heeringa, B., Iordan, M.C., Theran, L.: Searching in dynamic tree-like partial orders. CoRR abs/1010.1316 (2010)Google Scholar
  11. 11.
    Laber, E., Nogueira, L.T.: Fast searching in trees. Electronic Notes in Discrete Mathematics 7, 1–4 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Meir, A., Moon, J.W.: On the altitude of nodes in random trees. Canadian Journal of Mathematics 30, 997–1015 (1978)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bergeron, F., Flajolet, P., Salvy, B.: Varieties of increasing trees. In: Raoult, J.-C. (ed.) CAAP 1992. LNCS, vol. 581, pp. 24–48. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  14. 14.
    Drmota, M.: The height of increasing trees. Annals of Combinatorics 12, 373–402 (2009), doi:10.1007/s00026-009-0009-xMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Grimmett, G.R.: Random labelled trees and their branching networks. J. Austral. Math. Soc. Ser. A 30(2), 229–237 (1980/1981)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Brent Heeringa
    • 1
  • Marius Cătălin Iordan
    • 2
  • Louis Theran
    • 3
  1. 1.Dept. of Computer ScienceWilliams CollegeUSA
  2. 2.Dept. of Computer ScienceStanford UniversityUSA
  3. 3.Dept. of MathematicsTemple UniversityUSA

Personalised recommendations