Consistent Labeling of Rotating Maps

  • Andreas Gemsa
  • Martin Nöllenburg
  • Ignaz Rutter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)


Dynamic maps that allow continuous map rotations, e.g., on mobile devices, encounter new issues unseen in static map labeling before. We study the following dynamic map labeling problem: The input is a static, labeled map, i.e., a set P of points in the plane with attached non-overlapping horizontal rectangular labels. The goal is to find a consistent labeling of P under rotation that maximizes the number of visible labels for all rotation angles such that the labels remain horizontal while the map is rotated. A labeling is consistent if a single active interval of angles is selected for each label such that labels neither intersect each other nor occlude points in P at any rotation angle.

We first introduce a general model for labeling rotating maps and derive basic geometric properties of consistent solutions. We show NP-completeness of the active interval maximization problem even for unit-square labels. We then present a constant-factor approximation for this problem based on line stabbing, and refine it further into an EPTAS. Finally, we extend the EPTAS to the more general setting of rectangular labels of bounded size and aspect ratio.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. Theory Appl. 11, 209–218 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Been, K., Daiches, E., Yap, C.: Dynamic map labeling. IEEE Trans. Visual. and Comput. Graphics 12(5), 773–780 (2006)CrossRefGoogle Scholar
  3. 3.
    Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for consistent dynamic map labeling. Comput. Geom. Theory Appl. 43(3), 312–328 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Formann, M., Wagner, F.: A packing problem with applications to lettering of maps. In: Proc. 7th Annu. ACM Sympos. Comput. Geom. (SoCG 1991), pp. 281–288 (1991)Google Scholar
  5. 5.
    Gemsa, A., Nöllenburg, M., Rutter, I.: Consistent Labeling of Rotating Maps. ArXiv e-prints, arXiv:1104.5634 (April 2011)Google Scholar
  6. 6.
    Gervais, E., Nussbaum, D., Sack, J.-R.: DynaMap: a context aware dynamic map application. In: Proc. GISPlanet, Estoril, Lisbon, Portugal (2005)Google Scholar
  7. 7.
    Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Klau, G.W., Mutzel, P.: Optimal labeling of point features in rectangular labeling models. Math. Programming (Series B), 435–458 (2003)Google Scholar
  9. 9.
    van Kreveld, M., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput. Geom. Theory Appl. 13, 21–47 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mote, K.D.: Fast point-feature label placement for dynamic visualizations. Inform. Visual. 6(4), 249–260 (2007)CrossRefGoogle Scholar
  12. 12.
    Nöllenburg, M., Polishchuk, V., Sysikaski, M.: Dynamic one-sided boundary labeling. In: Proc. 18th ACM SIGSPATIAL Int’l Conf. Adv. Geo. Inform. Syst., pp. 310–319. ACM, New York (2010)Google Scholar
  13. 13.
    Petzold, I., Gröger, G., Plümer, L.: Fast screen map labeling—data-structures and algorithms. In: Proc. 23rd Int’l. Cartographic Conf. (ICC 2003), pp. 288–298 (2003)Google Scholar
  14. 14.
    Wagner, F., Wolff, A., Kapoor, V., Strijk, T.: Three rules suffice for good label placement. Algorithmica 30(2), 334–349 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andreas Gemsa
    • 1
  • Martin Nöllenburg
    • 1
  • Ignaz Rutter
    • 1
  1. 1.Institute of Theoretical InformaticsKarlsruhe Institute of Technology (KIT)Germany

Personalised recommendations