Horoball Hulls and Extents in Positive Definite Space

  • P. Thomas Fletcher
  • John Moeller
  • Jeff M. Phillips
  • Suresh Venkatasubramanian
Conference paper

DOI: 10.1007/978-3-642-22300-6_33

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)
Cite this paper as:
Fletcher P.T., Moeller J., Phillips J.M., Venkatasubramanian S. (2011) Horoball Hulls and Extents in Positive Definite Space. In: Dehne F., Iacono J., Sack JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg

Abstract

The space of positive definite matrices P(n) is a Riemannian manifold with variable nonpositive curvature. It includes Euclidean space and hyperbolic space as submanifolds, and poses significant challenges for the design of algorithms for data analysis. In this paper, we develop foundational geometric structures and algorithms for analyzing collections of such matrices. A key technical contribution of this work is the use of horoballs, a natural generalization of halfspaces for non-positively curved Riemannian manifolds. We propose generalizations of the notion of a convex hull and a centerpoint and approximations of these structures using horoballs and based on novel decompositions of P(n). This leads to an algorithm for approximate hulls using a generalization of extents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • P. Thomas Fletcher
    • 1
  • John Moeller
    • 1
  • Jeff M. Phillips
    • 1
  • Suresh Venkatasubramanian
    • 1
  1. 1.University of UtahUnited States

Personalised recommendations