On Rectilinear Partitions with Minimum Stabbing Number

  • Mark de Berg
  • Amirali Khosravi
  • Sander Verdonschot
  • Vincent van der Weele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)


Let S be a set of n points in \({\Bbb R}^d\), and let r be a parameter with 1 ≤ r ≤ n. A rectilinear r-partition for S is a collection Ψ(S) : = {(S1,b1),…,(St,bt)}, such that the sets Si form a partition of S, each bi is the bounding box of Si, and n/2r ≤ |Si| ≤ 2n/r for all 1 ≤ i ≤ t. The (rectilinear) stabbing number of Ψ(S) is the maximum number of bounding boxes in Ψ(S) that are intersected by an axis-parallel hyperplane h. We study the problem of finding an optimal rectilinear r-partition—a rectilinear partition with minimum stabbing number—for a given set S. We obtain the following results.

  • Computing an optimal partition is np-hard already in \({\Bbb R}^2\).

  • There are point sets such that any partition with disjoint bounding boxes has stabbing number Ω(r1 − 1/d), while the optimal partition has stabbing number 2.

  • An exact algorithm to compute optimal partitions, running in polynomial time if r is a constant, and a faster 2-approximation algorithm.

  • An experimental investigation of various heuristics for computing rectilinear r-partitions in \({\Bbb R}^2\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Erickson, J.: Geometric Range Searching and its Relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, pp. 1–56 (1998)Google Scholar
  2. 2.
    Ahuja, P.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  3. 3.
    Arthur, D., Vassilvitskii, S.: K-means++: the Advantages of Careful Seeding. In: Proc. of the 18th Annual ACM-SIAM Sym. of Desc. Alg., pp. 1027–1035 (2007)Google Scholar
  4. 4.
    Chazelle, B., Welzl, E.: Quasi-optimal Range Searching in Spaces of Finite VC-dimension. Arch. Rat. Mech. Anal. 4, 467–490 (1989)MathSciNetMATHGoogle Scholar
  5. 5.
    Ahuja, P.K., Magnanti, T.L., Orlin, J.B.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)Google Scholar
  6. 6.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Dijkstra, E.W., Feijen, W.H.J., Sterringa, J.: A Method of Programming. Addison-Wesley, Reading (1988)Google Scholar
  8. 8.
    Fekete, S.P., Lübbecke, M.E., Meijer, H.: Minimizing the Stabbing Number of Matchings, Trees, and Triangulations. Discr. Comput. Geom. 40, 595–621 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Interactibility: A Guide to the Theory of NP-Completness. W.H. Freeman and Co., New York (1979)Google Scholar
  10. 10.
    Haverkort, H., van Walderveen, F.: Four-dimensional Hilbert Curves for R-trees. In: Proc. Workshop on Algorithms Engineering and Experiments, ALANEX (2009)Google Scholar
  11. 11.
    Manolopoulos, Y., Nanopoulos, A., Theodoridis, Y., Papadopoulos, A.: R-trees: Theory and Applications. Series in Adv. Inf. and Knowledge Processing. Springer, Heidelberg (2005)MATHGoogle Scholar
  12. 12.
    Matoušek, J., Tarantello, G.: Efficient Partition Trees. Discr. Comput. Geom. 8, 315–334 (1992)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mark de Berg
    • 1
  • Amirali Khosravi
    • 1
  • Sander Verdonschot
    • 2
  • Vincent van der Weele
    • 3
  1. 1.Department of Mathematics and Computing ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations