Parameterized Reductions and Algorithms for Another Vertex Cover Generalization

  • Peter Damaschke
  • Leonid Molokov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)


We study a novel generalization of the Vertex Cover problem which is motivated by, e.g., error correction in the inference of chemical mixtures by their observable reaction products. We focus on the important case of deciding on one of two candidate substances. This problem has nice graph-theoretic formulations situated between Vertex Cover and 3-Hitting Set. In order to characterize their parameterized complexity we devise parameter-preserving reductions, and we show that some minimum solution can be computed faster than by solving 3-Hitting Set in general. More explicitly, we introduce the Union Editing problem: In a hypergraph with red and blue vertices, edit the colors so that the red set becomes the union of some hyperedges. The case of degree 2 is equivalent to Star Editing: In a graph with red and blue edges, edit the colors so that the red set becomes the union of some stars, i.e., vertices with all their incident edges.


Vertex Cover Cost Edge Blue Edge Parameterized Reduction Blue Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Yehuda, R., Hermelin, D., Rawitz, D.: An Extension of the Nemhauser-Trotter Theorem to Generalized Vertex Cover with Applications. SIAM J. Discr. Math. 24, 287–300 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, J., Kanj, I.A., Xia, G.: Improved Upper Bounds for Vertex Cover. Theor. Comput. Sci. 411, 3736–3756 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Damaschke, P.: Pareto complexity of two-parameter FPT problems: A case study for partial vertex cover. In: Chen, J., Fomin, F. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 110–121. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Damaschke, P., Molokov, L.: The Union of Minimal Hitting Sets: Parameterized Combinatorial Bounds and Counting. J. Discr. Algor. 7, 391–401 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dost, B., Bandeira, N., Li, X., Shen, Z., Briggs, S., Bafna, V.: Shared peptides in mass spectrometry based protein quantification. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 356–371. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fernau, H., Manlove, D.: Vertex and Edge Covers with Clustering Properties: Complexity and Algorithms. J. Discr. Algor. 7, 149–167 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Guo, J., Niedermeier, R., Wernicke, S.: Parameterized Complexity of Vertex Cover Variants. Theory Comput. Syst. 41, 501–520 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    He, Z., Yang, C., Yang, C., Qi, R.Z., Tam, J.P.M., Yu, W.: Optimization-based peptide mass fingerprinting for protein mixture identification. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 16–30. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Molokov, L.: Application of Combinatorial Methods to Protein Identification in Peptide Mass Fingerprinting. In: Int. Conf. on Knowledge Discovery and Info. Retrieval KDIR 2010, pp. 307–313. SciTePress (2010)Google Scholar
  12. 12.
    Nesvizhskii, A.I., Aebersold, R.: Interpretation of Shotgun Proteomic Data: The Protein Inference Problem. Mol. Cellular Proteomics 4, 1419–1440 (2005)CrossRefGoogle Scholar
  13. 13.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math. and its Appl. Oxford Univ. Press (2006)Google Scholar
  14. 14.
    Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized domination. In: Yang, B., Du, D.Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 116–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Wahlström, M.: Algorithms, Measures, and Upper Bounds for Satisfiability and Related Problems. PhD Thesis 1079, Linköping Studies in Science and Technol. (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Damaschke
    • 1
  • Leonid Molokov
    • 1
  1. 1.Department of Computer Science and EngineeringChalmers UniversityGöteborgSweden

Personalised recommendations