Beyond Triangulation: Covering Polygons with Triangles

  • Tobias Christ
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)


We consider the triangle cover problem. Given a polygon P, cover it with a minimum number of triangles contained in P. This is a generalization of the well-known polygon triangulation problem. Another way to look at it is as a restriction of the convex cover problem, in which a polygon has to be covered with a minimum number of convex pieces. Answering a question stated in the Handbook of Discrete and Computational Geometry, we show that the convex cover problem without Steiner points is NP-hard. We present a reduction that also implies NP-hardness of the triangle cover problem and which in a second step allows to get rid of Steiner points. For the problem where only the boundary of the polygon has to be covered, we also show that it is contained in NP and thus NP-complete and give an efficient factor 2 approximation algorithm.


Cover Problem Steiner Point Simple Polygon Polygonal Region Main Switch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keil, J.M.: Polygon decomposition. In: Handbook of Computational Geometry, pp. 491–518. North-Holland, Amsterdam (2000)CrossRefGoogle Scholar
  2. 2.
    Culberson, J.C., Reckhow, R.A.: Covering polygons is hard. J. Algorithms 17(1), 2–44 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    O’Rourke, J., Suri, S.: Polygons. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 583–606. CRC Press, LLC, Boca Raton, FL (2004)Google Scholar
  4. 4.
    Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. In: Proc. 22nd Annu. ACM Sympos. Comput. Geom., pp. 1–10 (2006)Google Scholar
  5. 5.
    O’Rourke, J.: Art gallery theorems and algorithms. International Series of Monographs on Computer Science. The Clarendon Press Oxford University Press, New York (1987)zbMATHGoogle Scholar
  6. 6.
    Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Discrete Appl. Math. 158(6), 718–722 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eidenbenz, S.J., Widmayer, P.: An approximation algorithm for minimum convex cover with logarithmic performance guarantee. SIAM J. Comput. 32(3), 654–670 (2003) (electronic) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    O’Rourke, J., Supowit, K.J.: Some NP-hard polygon decomposition problems. IEEE Trans. Inform. Theory IT-30, 181–190 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chazelle, B., Dobkin, D.P.: Optimal convex decompositions. In: Computational geometry. Mach. Intelligence Pattern Recogn., vol. 2, pp. 63–133. North-Holland, Amsterdam (1985)CrossRefGoogle Scholar
  10. 10.
    Chen, C., Chang, R.: On the minimality of polygon triangulation. BIT 30(4), 570–582 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lingas, A.: The power of non-rectilinear holes. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 369–383. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  12. 12.
    Asano, T., Asano, T., Pinter, R.Y.: Polygon triangulation: Efficiency and minimality. J. Algorithms 7(2), 221–231 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Keil, M., Snoeyink, J.: On the time bound for convex decomposition of simple polygons. Internat. J. Comput. Geom. Appl. 12(3), 181–192 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5), 485–524 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Arora, S.: Exploring complexity through reductions. In: Computational complexity theory. IAS/Park City Math. Ser., vol. 10, pp. 101–126. Amer. Math. Soc., Providence (2004)Google Scholar
  16. 16.
    Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility polygons with holes. In: Proc. 2nd Annu. ACM Sympos. Comput. Geom., pp. 14–23 (1986)Google Scholar
  17. 17.
    Chazelle, B., Edelsbrunner, H., Grigni, M., et al.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. In: FOCS, pp. 248–255. IEEE Computer Society, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tobias Christ
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZürichSwitzerland

Personalised recommendations