Advertisement

Feedback Vertex Set in Mixed Graphs

  • Paul Bonsma
  • Daniel Lokshtanov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6844)

Abstract

A mixed graph is a graph with both directed and undirected edges. We present an algorithm for deciding whether a given mixed graph on n vertices contains a feedback vertex set (FVS) of size at most k, in time O(47.5 k ·k! ·n 4). This is the first fixed parameter tractable algorithm for FVS that applies to both directed and undirected graphs.

Keywords

Undirected Graph Internal Vertex Mixed Graph Connection Path Terminal Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12, 289–297 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-like approximation algorithms for the vertex feedback set problem. Artif. Intell. 83, 167–188 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5, 59–68 (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M. (Meta) kernelization. In: FOCS 2009, pp. 629–638. IEEE, Los Alamitos (2009)Google Scholar
  5. 5.
    Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74, 1188–1198 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55, 1–19 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dehne, F., Fellows, M.R., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. Theor. Comput. Syst. 41, 479–492 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic results. SIAM J. Comput. 24, 873–921 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Festa, P., Pardalos, P.M., Resende, M.: Feedback set problems. Handbook of Combinatorial Optimization A(Supplement), 209–258 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)zbMATHGoogle Scholar
  14. 14.
    Fomin, F., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: STACS 2010. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  15. 15.
    Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72, 1386–1396 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jain, K., Hajiaghayi, M., Talwar, K.: The generalized deadlock resolution problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 853–865. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback vertex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–247. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computations, 85–103 (1972)Google Scholar
  20. 20.
    Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness. Springer, Heidelberg (1984)CrossRefzbMATHGoogle Scholar
  21. 21.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Trans. Algorithms 2, 403–415 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Razgon, I.: Computing minimum directed feedback vertex set in O(1.9977\(^{\mbox{n}}\)). In: ICTCS, pp. 70–81 (2007)Google Scholar
  25. 25.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32, 299–301 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Thomassé, S.: A 4k 2 kernel for feedback vertex set. ACM Trans. Algorithms 6 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paul Bonsma
    • 1
  • Daniel Lokshtanov
    • 2
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations