Advertisement

Input Devices and Music Interaction

  • Joseph Malloch
  • Stephen Sinclair
  • Avrum Hollinger
  • Marcelo M. Wanderley
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 74)

Abstract

This chapter discusses some principles of digital musical instrument design in the context of different goals and constraints.  It shows, through several examples, that a variety of conditions can motivate design choices for sensor interface and mapping, such as robustness and reliability, environmental constraints on sensor technology, or the desire for haptic feedback.  Details of specific hardware and software choices for some DMI designs are discussed in this context.

Keywords

Virtual Object Musical Instrument Input Device Haptic Feedback Haptic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrien, J.-M.: Physical model synthesis: The missing link. In: Poli, G.D., Piccialli, A., Roads, C. (eds.) Representations of Musical Signals, pp. 269–297. MIT Press, Cambridge (1991)Google Scholar
  2. 2.
    Cadoz, C.: Instrumental Gesture and Musical Composition. In: Proc. of the 1988 International Computer Music Conference, pp. 1–12. International Computer Music Association, San Francisco, Calif (1988)Google Scholar
  3. 3.
    Cadoz, C.: Retour au réel: le sens du feedback. In: Rencontres Musicales Pluridisciplinaires: Le Feedback dans la Création Musicale (2006)Google Scholar
  4. 4.
    Cadoz, C., Luciani, A., Florens, J.-L.: CORDIS-ANIMA: A Modeling and Simulation System for Sound and Image Synthesis - The General Formalism. Computer Music J. 17(1), 19–29 (1993)CrossRefGoogle Scholar
  5. 5.
    Cadoz, C., Wanderley, M.M.: Gesture-Music. In: Trends in Gestural Control of Music, Ircam - Centre Pompidou (2000)Google Scholar
  6. 6.
    Cage, J.: GW 2003. Wesleyan University Press, Middletown (1961)Google Scholar
  7. 7.
    Cariou, B.: Design of an Alternate Controller from an Industrial Design Perspective. In: Proc. of the 1992 International Computer Music Conference, pp. 366–367. International Computer Music Association, San Francisco (1992)Google Scholar
  8. 8.
    Cariou, B.: The aXiO MIDI Controller. In: Proc. of the 1994 International Computer Music Conference, pp. 163–166. International Computer Music Association, San Francisco (1994)Google Scholar
  9. 9.
    Clarke, E.F.: Generative processes in music: the psychology of performance, improvisation, and composition, ch. 1, pp. 1–26. Clarendon Press, Oxford (1988)Google Scholar
  10. 10.
    Cook, P.: Principles for designing computer music controllers. In: Proceedings of the 2001 Conference on New Interfaces for Musical Expression, pp. 1–4. National University of Singapore, Singapore (2001)Google Scholar
  11. 11.
    Fitzmaurice, G.W., Ishii, H., Buxton, W.: Bricks: Laying the foundations for graspable user interfaces. In: Proceedings of ACM CHI 1995, Denver, Colorado, pp. 442–449 (May 1995)Google Scholar
  12. 12.
    Florens, J.-L.: Expressive bowing on a virtual string instrument. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 487–496. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Haken, L., Tellman, E., Wolfe, P.: An Indiscrete Music Keyboard. Computer Music J. 22(1), 31–48 (1998)CrossRefGoogle Scholar
  14. 14.
    Hollinger, A., Steele, C., Penhune, V., Zatorre, R., Wanderley, M.M.: fMRI-compatible electronic controllers. In: Proceedings of the International Conference on New Interfaces for Musical Expression, pp. 246–249. ACM Press, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Hollinger, A., Thibodeau, J., Wanderley, M.M.: An embedded hardware platform for fungible interfaces. In: Proceedings of the International Computer Music Conference, ICMA, pp. 26–29 (2010)Google Scholar
  16. 16.
    Jensenius, A.R., Kvifte, T., Godøy, R.I.: Towards a gesture description interchange format. In: Proceedings of the Conference on New Interfaces for Musical Expression, Paris, pp. 176–179. IRCAM – Centre Pompidou (2006)Google Scholar
  17. 17.
    Jordà, S.: Sonigraphical instruments: from FMOL to the reacTable. In: Proceedings of the Conference on New Interfaces for Musical Expression, Montreal, Canada, pp. 70–76 (2003)Google Scholar
  18. 18.
    Koehly, R., Curtil, D., Wanderley, M.M.: Paper FSRs and latex/fabric traction sensors: Methods for the development of home-made touch sensors. In: NIME 2006: Proceedings of the 2006 conference on New interfaces for musical expression, Paris, pp. 230–233. IRCAM—Centre Pompidou (2006)Google Scholar
  19. 19.
    Laycock, S., Day, A.: A survey of haptic rendering techniques. Computer Graphics Forum 26(1), 50–65 (2007)CrossRefGoogle Scholar
  20. 20.
    Levitin, D., McAdams, S., Adams, R.L.: Control parameters for musical instruments: a foundation for new mappings of gesture to sound. Organised Sound 7(2), 171–189 (2002)CrossRefGoogle Scholar
  21. 21.
    Malloch, J., Birnbaum, D., Sinyor, E., Wanderley, M.M.: Towards a new conceptual framework for digital musical instruments. In: Proc. of the Int. Conf. on Digital Audio Effects (DAFx 2006), Montreal, Quebec, Canada, Sept. 18–20 2006, pp. 49–52 (2006)Google Scholar
  22. 22.
    Malloch, J., Sinclair, S., Wanderley, M.M.: A Network-Based Framework for Collaborative Development and Performance of Digital Musical Instruments. In: Kronland-Martinet, R., Ystad, S., Jensen, K. (eds.) CMMR 2007. LNCS, vol. 4969, pp. 401–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Malloch, J., Wanderley, M.M.: The T-Stick: From musical interface to musical instrument. In: Proceedings of the 2007 International Conference on New Interfaces for Musical Expression (NIME 2007), New York City, USA (2007)Google Scholar
  24. 24.
    McCartney, J.: Rethinking the computer music language: SuperCollider. Computer Music Journal 26, 61–68 (2002)CrossRefGoogle Scholar
  25. 25.
    Miranda, E.R., Wanderley, M.M.: New Digital Instruments: Control and Interaction Beyond the Keyboard. A-R Publications, Middleton (2006)Google Scholar
  26. 26.
    Morris, G.C., Leitman, S., Kassianidou, M.: SillyTone squish factory. In: Proceedings of the 2004 Conference on New Interfaces for Musical Expression, Hamamatsu, Shizuoka, pp. 201–202 (Japan 2004)Google Scholar
  27. 27.
    Mulder, A.: Virtual musical instruments: Accessing the sound synthesis universe as a performer. In: Proceedings of the First Brazilian Symposium on Computer Music, pp. 243–250 (1994)Google Scholar
  28. 28.
    Mulder, A.G.E., Fels, S.S., Mase, K.: Mapping virtual object manipulation to sound variation. IPSJ SIG Notes 122, 63–68 (1997)Google Scholar
  29. 29.
    Overholt, D.: The musical interface technology design space. Organised Sound 14(2), 217–226 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Paradiso, J.A., Hsiao, K.Y., Benbasat, A.: Tangible music interfaces using passive magnetic tags. In: Workshop on New Interfaces for Musical Expression - ACM CH 2001, Seattle, USA, pp. 1–4 (April 2001)Google Scholar
  31. 31.
    Pestova, X., Donald, E., Hindman, H., Malloch, J., Marshall, M.T., Rocha, F., Sinclair, S., Stewart, D.A., Wanderley, M.M., Ferguson, S.: The CIRMMT/McGill digital orchestra project. In: Proc. of the 2009 International Computer Music Conference. International Computer Music Association, San Francisco (2009)Google Scholar
  32. 32.
    Puckette, M.: Pure Data: another integrated computer music environment. In: Proceedings, Second Intercollege Computer Music Concerts, Tachikawa, Japan, pp. 37–41 (1996)Google Scholar
  33. 33.
    Rasmussen, J.: Information Processing and Human-Machine Interaction: an Approach to Cognitive Engineering. Elsevier Science Inc., New York (1986)Google Scholar
  34. 34.
    Rovan, J., Hayward, V.: Typology of tactile sounds and their synthesis in gesture-driven computer music performance. In: Wanderley, M.M., Battier, M. (eds.) Trends in Gestural Control of Music, Paris, pp. 297–320. IRCAM (2000)Google Scholar
  35. 35.
    Ryan, J.: Some Remarks on Musical Instrument Design at STEIM. Contemporary Music Review 6(1), 3–17 (1991)CrossRefGoogle Scholar
  36. 36.
    Sinclair, S., Wanderley, M.M.: A run-time programmable simulator to enable multi-modal interaction with rigid-body systems. Interact. Comput. 21(1-2), 54–63 (2009)CrossRefGoogle Scholar
  37. 37.
    Smith, J.O.: Physical modeling using digital waveguides. Comp. Mus. J. 16(4), 74–91 (1992)CrossRefGoogle Scholar
  38. 38.
    Wang, G., Cook, P.: ChucK: a programming language for on-the-fly, real-time audio synthesis and multimedia. In: MULTIMEDIA 2004: Proceedings of the 12th Annual ACM International Conference on Multimedia, New York, NY, pp. 812–815 (2004)Google Scholar
  39. 39.
    Wessel, D., Wright, M.: Problems and prospects for intimate control of computers. Computer Music Journal 26(3), 11–22 (2002)CrossRefGoogle Scholar
  40. 40.
    Witkin, A., Gleicher, M., Welch, W.: Interactive dynamics. SIGGRAPH Comput. Graph. 24(2), 11–21 (1990)CrossRefGoogle Scholar
  41. 41.
    Wright, M., Freed, A.: OpenSoundControl: A new protocol for communicating with sound synthesizers. In: Proceedings of the International Computer Music Conference, ICMA (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joseph Malloch
    • 1
  • Stephen Sinclair
    • 1
  • Avrum Hollinger
    • 1
  • Marcelo M. Wanderley
    • 1
  1. 1.Input Devices and Music Interaction Laboratory (IDMIL), Centre for Interdisciplinary Research in Media Music and Technology (CIRMMT)McGill UniversityMontrealCanada

Personalised recommendations