Building an Environmental Information System for Personalized Content Delivery

  • Leo Wanner
  • Stefanos Vrochidis
  • Sara Tonelli
  • Jürgen Moßgraber
  • Harald Bosch
  • Ari Karppinen
  • Maria Myllynen
  • Marco Rospocher
  • Nadjet Bouayad-Agha
  • Ulrich Bügel
  • Gerard Casamayor
  • Thomas Ertl
  • Ioannis Kompatsiaris
  • Tarja Koskentalo
  • Simon Mille
  • Anastasia Moumtzidou
  • Emanuele Pianta
  • Horacio Saggion
  • Luciano Serafini
  • Virpi Tarvainen
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 359)

Abstract

Citizens are increasingly aware of the influence of environmental and meteorological conditions on the quality of their life. This results in an increasing demand for personalized environmental information, i.e., information that is tailored to citizens’ specific context and background. In this work we describe the development of an environmental information system that addresses this demand in its full complexity. Specifically, we aim at developing a system that supports submission of user generated queries related to environmental conditions. From the technical point of view, the system is tuned to discover reliable data in the web and to process these data in order to convert them into knowledge, which is stored in a dedicated repository. At run time, this information is transferred into an ontology-structured knowledge base, from which then information relevant to the specific user is deduced and communicated in the language of their preference.

Keywords

environmental information service environmental node discovery knowledge personalization infrastructure services 

References

  1. 1.
    Karatzas, K.: State-of-the-art in the dissemination of AQ information to the general public. In: Proceedings of EnviroInfo, Warsaw, vol. 2, pp. 41–47 (2007)Google Scholar
  2. 2.
    Peinel, G., Rose, T., San José, R.: Customized Information Services for Environmental Awareness in Urban Areas. In: Proceedings of the 7th World Congress on Intelligent Transport Systems, Turin (2000)Google Scholar
  3. 3.
    Wanner, L., Bohnet, B., Bouayad-Agha, N., Lareau, F., Nicklass, D.: MARQUIS: Generation of User-Tailored Multilingual Air Quality Bulletins. Applied Artificial Intelligence 24(10), 914–952 (2010)CrossRefGoogle Scholar
  4. 4.
    Wöber, K.: Domain Specific Search Engines. In: Fesenmaier, D.R., Werthner, H., Wöber, K. (eds.) Travel Destination Recommendation Systems: Behavioral Foundations and Applications, pp. 205–226. CAB International, Cambridge (2006)CrossRefGoogle Scholar
  5. 5.
    Oyama, S., Kokubo, T., Ishida, T.: Domain-Specific Web Search with Keyword Spices Awareness in Urban Areas. IEEE Transactions on Knowledge and Data Engineering 16(1), 17–24 (2004)CrossRefGoogle Scholar
  6. 6.
    Usländer, T. (ed.): Reference Model for the ORCHESTRA Architecture Version 2.1. OGC Best Practices Document 07-097 (2007) , http://portal.opengeospatial.org/files/?artifact_id=23286
  7. 7.
    Usländer, T.: Specification of the Sensor Service Architecture, Version 3.0 (Rev. 3.1). OGC Discussion Paper 09-132r1. Deliverable D2.3.4 of the European Integrated Project SANY, FP6-IST-033564 (2009), http://portal.opengeospatial.org/files/?artifact_id=35888&version=1
  8. 8.
    World Wide Web Consortium: OWL Web Ontology Language Reference, http://www.w3.org/TR/owl-overview/

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Leo Wanner
  • Stefanos Vrochidis
  • Sara Tonelli
  • Jürgen Moßgraber
  • Harald Bosch
  • Ari Karppinen
  • Maria Myllynen
  • Marco Rospocher
  • Nadjet Bouayad-Agha
  • Ulrich Bügel
  • Gerard Casamayor
  • Thomas Ertl
  • Ioannis Kompatsiaris
  • Tarja Koskentalo
  • Simon Mille
  • Anastasia Moumtzidou
  • Emanuele Pianta
  • Horacio Saggion
  • Luciano Serafini
  • Virpi Tarvainen

There are no affiliations available

Personalised recommendations