Plug-In Privacy for Smart Metering Billing

  • Marek Jawurek
  • Martin Johns
  • Florian Kerschbaum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6794)


Traditional electricity meters are replaced by Smart Meters in customers’ households. Smart Meters collect fine-grained utility consumption profiles from customers, which in turn enables the introduction of dynamic, time-of-use tariffs. However, the fine-grained usage data that is compiled in this process also allows to infer the inhabitant’s personal schedules and habits. We propose a privacy-preserving protocol that enables billing with time-of-use tariffs without disclosing the actual consumption profile to the supplier. Our approach relies on a zero-knowledge proof based on Pedersen Commitments performed by a plug-in privacy component that is put into the communication link between Smart Meter and supplier’s back-end system. We require no changes to the Smart Meter hardware and only small changes to the software of Smart Meter and back-end system. In this paper we describe the functional and privacy requirements, the specification and security proof of our solution and give a performance evaluation of a prototypical implementation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    D. U. Association. DLMS/COSEM: Device language message specification/companion specification for energy metering (2010),
  3. 3.
    Balasch, J., Rial, A., Troncoso, C., Geuens, C., Preneel, B., Verbauwhede, I.: Pretp: Privacy-preserving electronic toll pricing. In: 19th Usenix Security Symposium, Association, pp. 63–78, USENIX (2010)Google Scholar
  4. 4.
    Bauer, G., Stockinger, K., Lukowicz, P.: Recognizing the use-mode of kitchen appliances from their current consumption. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 163–176. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a standard Java card. In: ACM Conference on Computer and Communications Security, pp. 600–610 (2009)Google Scholar
  6. 6.
    Bohli, J.-M., Ugus, O., Sorge, C.: A privacy model for smart metering. In: Proceedings of the First IEEE International Workshop on Smart Grid Communications (in conjunction with IEEE ICC 2010) (2010)Google Scholar
  7. 7.
    Boyer, B.: Companion material for robust java benchmarking article series (2010)Google Scholar
  8. 8.
    Cavoukian, A., Polonetskyand, J., Wolf, C.: Smart Privacy for the Smart Grid: embedding privacy into the design of electricity conservation. Identity in the Information Society 3(2), 275–294 (2010)CrossRefGoogle Scholar
  9. 9.
    Craemer, K.D., Geert, D.: Analysis of state-of-the-art Smart Metering communication standards. In: Young Researcher Symposium edition 2010, Leuven, Belgium (2010)Google Scholar
  10. 10.
    Wisy, M.: Emsycon GmbH: Smart Meter language specification (SML) (January 2008)Google Scholar
  11. 11.
    Lenzini, M.O.G., Teeuw, W.: Trust, security, and privacy for the advanced metering infrastructure. Technical report (July 2009)Google Scholar
  12. 12.
    Garcia, F., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: Proceedings of the 6th International Workshop on Security and Trust Management (2010)Google Scholar
  13. 13.
    Hart, G.: Nonintrusive appliance load monitoring. Proceedings of the IEEE 80(12), 1870–1891 (1992)CrossRefGoogle Scholar
  14. 14.
    Hart, G.W.: Residential energy monitoring and computerized surveillance via utility power flows. In: IEEE Technology and Society Magazine (June 1989)Google Scholar
  15. 15.
    Heck, W.: Smart energy meter will not be compulsory. NRC Handelsblad (April 2009),
  16. 16.
    Jamieson, A.: Smart Meters could be spy in the home. Telegraph (UK) (October 2009),
  17. 17.
    Jawurek, M., Johns, M.: Security challenges of a changing energy landscape. In ISSE 2010, Securing Electronic Business Processes, pages 249–259, Vieweg+Teubner (2010)Google Scholar
  18. 18.
    Jonge, W., Jacobs, B.: Privacy-Friendly Electronic Traffic Pricing via Commits, pp. 143–161. Springer-Verlag, Heidelberg (2009)Google Scholar
  19. 19.
    Kerschbaum, F.: Practical privacy-preserving benchmarking. In: Proceedings of the 23rd IFIP International Information Security Conference, vol. 278, pp. 17–31. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    German Legislation. Energiewirtschaftsgesetz (2005)Google Scholar
  21. 21.
    German Legislation: Gesetz über das Meß und Eichwesen (Eichgesetz) (2008)Google Scholar
  22. 22.
    German Legislation: Bundesdatenschutzgesetz (2009)Google Scholar
  23. 23.
    Lemay, M., Gross, G., Gunter, C.A., Garg, S.: Unified architecture for large-scale attested metering. In: in Hawaii International Conference on System Sciences, Big Island. ACM Press, New York (2007)Google Scholar
  24. 24.
    Lisovich, M.A., Mulligan, D.K., Wicker, S.B.: Inferring personal information from demand-response systems. IEEE Security and Privacy 8(1), 11–20 (2010)CrossRefGoogle Scholar
  25. 25.
    McDaniel, P., McLaughlin, S.: Security and privacy challenges in the Smart Grid. IEEE Security and Privacy 7, 75–77 (2009)Google Scholar
  26. 26.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  27. 27.
    Petrlic, R.: A privacy-preserving concept for Smart Grids. In: Sicherheit in vernetzten Systemen: 18. DFN Workshop. Books on Demand GmbH, pp. B1–B14 (2010)Google Scholar
  28. 28.
    Rial, A., Danezis,G.: Privacy-preserving smart metering. Technical report, Microsoft Research (November 2010)Google Scholar
  29. 29.
    Sultanem, F.: Using appliance signatures for monitoring residential loads at meter panel level. IEEE Transactions on Power Delivery 6(4), 1380–1385 (1991)CrossRefGoogle Scholar
  30. 30.
    Thompson, B., Haber, S., Horne, W.G., Sander, T., Yao, D.: Privacy-preserving computation and verification of aggregate queries on outsourced databases. In: Privacy Enhancing Technologies, pp. 185–201 (2009)Google Scholar
  31. 31.
    Torchia, M.: Idc marketscape: North American AMI Communication Network 2011 vendor assessment (2011)Google Scholar
  32. 32.
    Vaidya, J., Zhu, Y.M., Clifton, C.W.: Privacy Preserving Data Mining (Advances in Information Security). Springer, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marek Jawurek
    • 1
  • Martin Johns
    • 1
  • Florian Kerschbaum
    • 1
  1. 1.SAP ResearchUSA

Personalised recommendations