Privacy-Friendly Aggregation for the Smart-Grid
- 167 Citations
- 2.4k Downloads
Abstract
The widespread deployment of smart meters for the modernisation of the electricity distribution network, but also for gas and water consumption, has been associated with privacy concerns due to the potentially large number of measurements that reflect the consumers behaviour. In this paper, we present protocols that can be used to privately compute aggregate meter measurements over defined sets of meters, allowing for fraud and leakage detection as well as network management and further statistical processing of meter measurements, without revealing any additional information about the individual meter readings. Thus, most of the benefits of the Smart Grid can be achieved without revealing individual data. The feasibility of the protocols has been demonstrated with an implementation on current smart meters.
Keywords
Hash Function Smart Grid Secret Sharing Discrete Logarithm Privacy PreservePreview
Unable to display preview. Download preview PDF.
References
- 1.European Parliament: DIRECTIVE 2009/72/EC (2009)Google Scholar
- 2.Cuijpers, C., Koops, B.J.: Het wetsvoorstel slimme meters: een privacytoets op basis van art. 8 evrm. Technical report, Tilburg University, October, Report (in Dutch) (2008)Google Scholar
- 3.The Smart Grid Interoperability Panel Cyber Security Working Group: Smart Grid Cybersecurity Strategy and Requirements. US National Institute for Standards and Technology, NIST (2010), http://csrc.nist.gov/publications/nistir/ir7628/nistir-7628_vol2.pdf
- 4.European Commission: Smart grids: from innovation to deployment (April 2011)Google Scholar
- 5.Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: 6th Workshop on Security and Trust Management, STM (2010)Google Scholar
- 6.Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings (BuildSys 2010), Zurich, Switzerland (November 2010)Google Scholar
- 7.Rial, A., Danezis, G.: Privacy-preserving smart metering. Technical Report MSRTR- 2010-150, Microsoft Research (November 2010)Google Scholar
- 8.Kursawe, K.: Some Ideas on Privacy Preserving Meter Aggregation. Technical Report ICIS–R11002, Radboud University Nijmegen (February 2011)Google Scholar
- 9.Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
- 10.Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. J. Cryptology 1(1), 65–75 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Hao, F., Zieliński, P.: A 2-Round Anonymous Veto Protocol. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols. LNCS, vol. 5087, pp. 202–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 12.Golle, P., Juels, A.: Dining Cryptographers Revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 13.Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)Google Scholar
- 14.Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
- 15.Schnorr, C.: Efficient signature generation for smart cards. Journal of Cryptology 4(3), 239–252 (1991)MathSciNetCrossRefGoogle Scholar
- 16.Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
- 17.Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
- 18.Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report TR 260, Institute for Theoretical Computer Science, ETH Zürich (March 1997)Google Scholar
- 19.Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992)CrossRefGoogle Scholar
- 20.Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why not to use pgp. In: Atluri, V., Syverson, P.F., di Vimercati, S.D.C. (eds.) WPES, pp. 77–84. ACM, New York (2004)CrossRefGoogle Scholar
- 21.Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 22.Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models, 1st edn. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar