Privacy-Friendly Aggregation for the Smart-Grid

  • Klaus Kursawe
  • George Danezis
  • Markulf Kohlweiss
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6794)


The widespread deployment of smart meters for the modernisation of the electricity distribution network, but also for gas and water consumption, has been associated with privacy concerns due to the potentially large number of measurements that reflect the consumers behaviour. In this paper, we present protocols that can be used to privately compute aggregate meter measurements over defined sets of meters, allowing for fraud and leakage detection as well as network management and further statistical processing of meter measurements, without revealing any additional information about the individual meter readings. Thus, most of the benefits of the Smart Grid can be achieved without revealing individual data. The feasibility of the protocols has been demonstrated with an implementation on current smart meters.


Hash Function Smart Grid Secret Sharing Discrete Logarithm Privacy Preserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    European Parliament: DIRECTIVE 2009/72/EC (2009)Google Scholar
  2. 2.
    Cuijpers, C., Koops, B.J.: Het wetsvoorstel slimme meters: een privacytoets op basis van art. 8 evrm. Technical report, Tilburg University, October, Report (in Dutch) (2008)Google Scholar
  3. 3.
    The Smart Grid Interoperability Panel Cyber Security Working Group: Smart Grid Cybersecurity Strategy and Requirements. US National Institute for Standards and Technology, NIST (2010),
  4. 4.
    European Commission: Smart grids: from innovation to deployment (April 2011)Google Scholar
  5. 5.
    Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: 6th Workshop on Security and Trust Management, STM (2010)Google Scholar
  6. 6.
    Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings (BuildSys 2010), Zurich, Switzerland (November 2010)Google Scholar
  7. 7.
    Rial, A., Danezis, G.: Privacy-preserving smart metering. Technical Report MSRTR- 2010-150, Microsoft Research (November 2010)Google Scholar
  8. 8.
    Kursawe, K.: Some Ideas on Privacy Preserving Meter Aggregation. Technical Report ICIS–R11002, Radboud University Nijmegen (February 2011)Google Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  10. 10.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. J. Cryptology 1(1), 65–75 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hao, F., Zieliński, P.: A 2-Round Anonymous Veto Protocol. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols. LNCS, vol. 5087, pp. 202–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Golle, P., Juels, A.: Dining Cryptographers Revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Schnorr, C.: Efficient signature generation for smart cards. Journal of Cryptology 4(3), 239–252 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  17. 17.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  18. 18.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report TR 260, Institute for Theoretical Computer Science, ETH Zürich (March 1997)Google Scholar
  19. 19.
    Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992)CrossRefGoogle Scholar
  20. 20.
    Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why not to use pgp. In: Atluri, V., Syverson, P.F., di Vimercati, S.D.C. (eds.) WPES, pp. 77–84. ACM, New York (2004)CrossRefGoogle Scholar
  21. 21.
    Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models, 1st edn. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Klaus Kursawe
    • 1
  • George Danezis
    • 2
  • Markulf Kohlweiss
    • 2
  1. 1.Radboud Universiteit NijmegenThe Netherlands
  2. 2.Microsoft ResearchCambridgeU.K.

Personalised recommendations