Distributed Event Clock Automata

Extended Abstract
  • James Ortiz
  • Axel Legay
  • Pierre-Yves Schobbens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6807)


In distributed real-time systems, we cannot assume that clocks are perfectly synchronized. To model them, we use independent clocks and define their timed semantics. The universal timed language, and the timed language inclusion of icTA are undecidable. Thus, we propose Recursive Distributed Event Clock Automata (DECA). DECA are closed under all boolean operations and their timed language inclusion problem is decidable (more precisely PSPACE-complete), allowing stepwise refinement. We also propose Distributed Event Clock Temporal Logic (DECTL), a real-time logic with independent time evolutions. This logic can be model-checked by translating a DECTL formula into a DECA automaton.


Temporal Logic Linear Temporal Logic Time Automaton Region Construction Time Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed timed automata with independently evolving clocks. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 82–97. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Bengtsson, J.E., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive power of silent transitions in timed automata. Fundam. Inform. 36(2-3), 145–182 (1998)MathSciNetzbMATHGoogle Scholar
  8. 8.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementability of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Dima, C.: Distributed real-time automata. In: Martin-Vide, C., Mitrana, V. (eds.) Essays in honor of Gheorghe Păun, pp. 131–140. Taylor & Francis, Abington (2003)Google Scholar
  10. 10.
    Dima, C., Lanotte, R.: Distributed time-asynchronous automata. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 185–200. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Doyen, L., Geeraerts, G., Raskin, J.-F., Reichert, J.: Realizability of real-time logics. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 133–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492–504. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Krishnan, P.: Distributed timed automata. Electr. Notes Theor. Comput. Sci. 28 (1999)Google Scholar
  15. 15.
    Jerson Ortiz, J., Legay, A., Schobbens, P.-Y.: Memory event clocks. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 198–212. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Ortiz, J., Legay, A., Schobbens, P.-Y.: Distributed event clock automata. Tech. rep., FUNDP University, Belgium (2011),
  17. 17.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science, pp. 255–264. IEEE Computer Society, Washington, DC, USA (2006),
  18. 18.
    Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Raskin, J.-F.: Logics, Automata and Classical Theories for Deciding Real Time. PhD thesis, FUNDP University, Belgium (1999),
  20. 20.
    Raskin, J.-F., Schobbens, P.-Y.: State clock logic: A decidable real-time logic. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 33–47. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Schobbens, P.-Y., Raskin, J.-F., Henzinger, T.A.: Axioms for real-time logics. Theoretical Computer Science 274, 151–182 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1-2), 72–99 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • James Ortiz
    • 1
  • Axel Legay
    • 2
    • 3
  • Pierre-Yves Schobbens
    • 1
  1. 1.Computer Science FacultyUniversity of NamurBelgium
  2. 2.INRIA/IRISARennesFrance
  3. 3.Institut MontefioreUniversity of LiègeBelgium

Personalised recommendations