Loops and Overloops for Tree Walking Automata

  • Pierre-Cyrille Héam
  • Vincent Hugot
  • Olga Kouchnarenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6807)


Tree Walking Automata (TWA) have lately received renewed interest thanks to their tight connection to XML. This paper introduces the notion of tree overloops, which is closely related to tree loops, and investigates the use of both for the following common operations on TWA: testing membership, transformation into a Bottom-Up Tree Automaton (BUTA), and testing emptiness. Notably, we argue that transformation into a BUTA is slightly less straightforward than was assumed, show that using overloops yields much smaller BUTA in the deterministic case, and provide a polynomial over-approximation of this construction which detects emptiness with surprising accuracy against randomly generated TWA.


Tree Walking Automata loops overloops membership emptiness approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A., Ullman, J.: Translations on a context free grammar. Information and Control 19(5), 439–475 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bojańczyk, M.: 1-bounded TWA cannot be determinized. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 62–73. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bojańczyk, M.: Tree-walking automata. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 1–2. Springer, Heidelberg (2008), CrossRefGoogle Scholar
  4. 4.
    Bojańczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized. Theoretical Computer Science 350(2-3), 164–173 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular languages. In: STOC 2005, pp. 234–243. ACM Press, New York (2005)Google Scholar
  6. 6.
    ten Cate, B., Segoufin, L.: Transitive closure logic, nested tree walking automata, and XPath. J. ACM 57(3), 251–260 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007)Google Scholar
  8. 8.
    Cosmadakis, S., Gaifman, H., Kanellakis, P., Vardi, M.: Decidable optimization problems for database logic programs. In: STOC 1988, pp. 477–490. ACM Press, New York (1988)Google Scholar
  9. 9.
    Heam, P., Hugot, V., Kouchnarenko, O.: Random Generation of Positive TAGEDs wrt. the Emptiness Problem. Tech. Rep. RR-7441, INRIA (November 2010)Google Scholar
  10. 10.
    Héam, P.-C., Nicaud, C., Schmitz, S.: Random generation of deterministic tree (Walking) automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 115–124. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Knuth, D.: Semantics of context-free languages: Correction. Theory of Computing Systems 5(2), 95–96 (1971)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Samuelides, M.: Automates d’arbres à jetons. Ph.D. thesis, Université Paris-Diderot - Paris VII (December 2007),
  13. 13.
    Segoufin, L., Vianu, V.: Validating Streaming XML Documents. In: Popa, L. (ed.) PODS, pp. 53–64. ACM, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pierre-Cyrille Héam
    • 1
  • Vincent Hugot
    • 1
  • Olga Kouchnarenko
    • 1
  1. 1.LIFCUniversité de Franche-Comté & INRIA CASSISBesançonFrance

Personalised recommendations