Compositional Failure Detection in Structured Transition Systems

  • Ingo Felscher
  • Wolfgang Thomas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6807)

Abstract

In model-checking, systems are often given as products. We propose an approach that is built on a preprocessing of specifications in terms of appropriate automata. This allows to incorporate information about the local behaviour and synchronization of the system components into the specification. We develop a framework of (partially) synchronized automaton products and a format of corresponding specification automata that allows for a compositional failure detection of linear regular properties (either for finite or for infinite behaviour). As a result we obtain an algorithm which separates the local and the non-local segments of system runs, resulting in improved complexity bounds in typical specifications.

Keywords

model-checking finitely synchronized products compositional failure detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison Wesley, Reading (1974)MATHGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  3. 3.
    Bodentien, N.O., Vestergaard, J., Friis, J., Kristoffersen, K.J., Larsen, K.G.: Verification of state/event systems by quotienting. BRICS RS-99-41 (December 1999) Nordic Workshop in Programming Theory, Uppsala, Sweden, October 6–8 (1999)Google Scholar
  4. 4.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundladen Der Mathematik 6, 66–92 (1960)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chang, C.C., Keisler, H.J.: Model Theory. North Holland, Amsterdam (1990)MATHGoogle Scholar
  6. 6.
    Cheung, S.C., Kramer, J.: Context constraints for compositional reachability analysis. ACM Trans. Softw. Eng. Methodol. 5, 334–377 (1996)CrossRefGoogle Scholar
  7. 7.
    Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Model theory makes formulas large. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 913–924. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Elgot, C.: Decision problems of finite automata design and related arithmetics. Transactions of the American Mathematical Society 98, 2152 (1961)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Feferman, S., Vaught, R.: The first-order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)MathSciNetMATHGoogle Scholar
  10. 10.
    Felscher, I.: The compositional method and regular reachability. Electronic Notes in Theoretical Computer Science 223, 103–117 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Felscher, I., Thomas, W.: On compositional failure detection in structured transition systems, RWTH Aachen Unviersity, Department of Computer Science, Tech. Rep.AIB-2011-12Google Scholar
  12. 12.
    Gabbay, D., Shehtman, V.: Products of modal logics. Logic Journal of IGPL 6(1), 73–146 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hodges, W.: Model theory, Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press, Cambridge (1993)Google Scholar
  14. 14.
    Makowsky, J.A.: Algorithmic uses of the feferman-vaught theorem. Annals of Pure and Applied Logic 126(1-3), 159–213 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mostowski, A.: On direct products of theories. The Journal of Symbolic Logic 17(1), 1–31 (1952)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Rabinovich, A.: On compositionality and its limitations. ACM Transactions on Computational Logic 8(1) (January 2007)Google Scholar
  17. 17.
    Shelah, S.: The monadic theory of order. The Annals of Mathematics 102(3), 379–419 (1975)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Beyond Words, vol. 3, pp. 389–455. Springer, New York (1997)CrossRefGoogle Scholar
  20. 20.
    Wöhrle, S., Thomas, W.: Model checking synchronized products of infinite transition systems. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science. LNCS, pp. 2–11. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  21. 21.
    Wolper, P.: Constructing automata from temporal logic formulas: A tutorial. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 261–277. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ingo Felscher
    • 1
  • Wolfgang Thomas
    • 1
  1. 1.RWTH Aachen UniversityGermany

Personalised recommendations