Examining Amyloid Structure and Kinetics with 1D and 2D Infrared Spectroscopy and Isotope Labeling

  • Lauren E. Buchanan
  • Emily B. Dunkelberger
  • Martin T. ZanniEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The combination of infrared spectroscopy and isotope labeling is a powerful toolset for providing residue-specific information about the structure and aggregation kinetics of amyloid peptides. In this chapter, we review a simple mathematical formalism to guide the interpretation of 1D- and 2DIR spectra of amyloid fibers. This formalism enables the design of isotope labeling schemes to extract precise structural features from IR spectra. We present 2DIR experiments on hIAPP and Aβ in which some of these strategies have been employed.


Pump Pulse Isotope Label Probe Pulse Turn Region Amyloid Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Sang-hee Shim, David Strasfeld, and Yun Ling who contributed much of the data on hIAPP presented in this chapter and Yung Sam Kim and Robin Hochstrasser for providing the data on Aβ. We would also like to acknowledge our collaborators Juan de Pablo and Jim Skinner as well as funding from the NSF CHE-0832584 and NIH DK079895.


  1. 1.
    J.J. Meier, R. Kayed, C.-Y. Lin, T. Gurlo, L. Haataja, S. Jayasinghe, R. Langen, C.G. Glabe, P.C. Butler, Am. J. Physiol. Endocrinol. Metab. 291, E1317 (2006)CrossRefGoogle Scholar
  2. 2.
    A.E. Butler, J. Janson, W.C. Soeller, P.C. Butler, Diabetes 52, 2304 (2003)CrossRefGoogle Scholar
  3. 3.
    S.A. Petty, S.M. Decatur, J. Am. Chem. Soc. 127, 13488 (2005)CrossRefGoogle Scholar
  4. 4.
    R.A. Gangani, D. Silva, W. Barber-Armstrong, S.M. Decatur, J. Am. Chem. Soc. 125, 13674 (2003)CrossRefGoogle Scholar
  5. 5.
    S.A. Petty, S.M. Decatur, Proc. Natl. Acad. Sci. U.S.A. 102, 14272 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Decatur, Acc. Chem. Res. 39, 169 (2006)CrossRefGoogle Scholar
  7. 7.
    Y.S. Kim, L. Liu, P.H. Axelsen, R.M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 105, 7720 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Y.S. Kim, L. Liu, P.H. Axelsen, R.M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 106, 17751 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Strasfeld, Y.L. Ling, R. Gupta, D.P. Raleigh, M.T. Zanni, J. Phys. Chem. B 113, 15679 (2009)CrossRefGoogle Scholar
  10. 10.
    S.-H. Shim, R. Gupta, Y.L. Ling, D.B. Strasfeld, D.P. Raleigh, M.T. Zanni, Proc. Natl. Acad. Sci. U.S.A. 106, 6614 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    C.T. Middleton, A.M. Woys, S. Mukherjee, M.T. Zanni, Methods 52, 12 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Mukherjee, P. Chowdhury, F. Gai, J. Phys. Chem. B 111, 4596 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Mukherjee, P. Chowdhury, F. Gai, J. Phys. Chem. B 113, 531 (2009)CrossRefGoogle Scholar
  14. 14.
    D.H.J. Lopes, A. Meister, A. Gohlke, A. Hauser, A. Blume, R. Winter, Biophys. J. 93, 3132 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    S. Jha, D. Sellin, R. Seidel, R. Winter, J. Mol. Biol. 389, 907 (2009)CrossRefGoogle Scholar
  16. 16.
    D.L. Sellin, L.-M. Yan, A. Kapurniotu, R. Winter, Biophys. Chem. 150, 73 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Luca, W.-M. Yau, R. Leapman, R. Tycko, Biochemistry 46, 13505 (2007)CrossRefGoogle Scholar
  18. 18.
    A.S. Reddy, L. Wang, S. Singh, Y.L. Ling, L. Buchanan, M.T. Zanni, J.L. Skinner, J.J. de Pablo, Biophys. J. 99, 2208 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Reddy, L. Wang, Y.-S. Lin, Y. Ling, M. Chopra, M.T. Zanni, J.L. Skinner, J.J. de Pablo, Biophys. J. 98, 443 (2010)CrossRefGoogle Scholar
  20. 20.
    W. Zhuang, D. Abramavicius, T. Hayashi, S. Mukamel, J. Phys. Chem. B 110, 3362 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Bagchi, C. Falvo, S. Mukamel, R.M. Hochstrasser, J. Phys. Chem. B 113, 11260 (2009)CrossRefGoogle Scholar
  22. 22.
    N. Sengupta, H. Maekawa, W. Zhuang, C. Toniolo, S. Mukamel, D.J. Tobias, N.-H. Ge, J. Phys. Chem. B 113, 12037 (2009)CrossRefGoogle Scholar
  23. 23.
    J.-H. Choi, S. Ham, M. Cho, J. Phys. Chem. B 107, 9132 (2003)CrossRefGoogle Scholar
  24. 24.
    C. Lee, M. Cho, J. Phys. Chem. B 108, 20397 (2004)CrossRefGoogle Scholar
  25. 25.
    S. Hahn, S. Kim, C. Lee, M. Cho, J. Chem. Phys. 123, 084905 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    P. Hamm, M.T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, Cambridge, 2011)Google Scholar
  27. 27.
    A.M. Woys, Y.S. Lin, A.S. Reddy, W. Xiong, J.J. de Pablo, J.L. Skinner, M.T. Zanni, J. Am. Chem. Soc. 132, 2832 (2010)CrossRefGoogle Scholar
  28. 28.
    Y.L. Ling, D.B. Strasfeld, S.-H. Shim, D.P. Raleigh, M.T. Zanni, J. Phys. Chem. B 113, 2498 (2009)CrossRefGoogle Scholar
  29. 29.
    P. Marek, A.M. Woys, K. Sutton, M.T. Zanni, D.P. Raleigh, Org. Lett. 12, 4848 (2010)CrossRefGoogle Scholar
  30. 30.
    S.-H. Shim, D.B. Strasfeld, Y.L. Ling, M.T. Zanni, Proc. Natl. Acad. Sci. U.S.A. 104, 14197 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    S.-H. Shim, M.T. Zanni, Phys. Chem. Chem. Phys. 11, 748 (2009)CrossRefGoogle Scholar
  32. 32.
    E.M. Grumstrup, S.-H. Shim, M.A. Montgomery, N.H. Damrauer, M.T. Zanni, Opt. Express 15, 16681 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    H. Naiki, K. Higuchi, M. Hosokawa, T. Takeda, Anal. Biochem. 177, 244 (1989)CrossRefGoogle Scholar
  34. 34.
    H. Naiki, K. Higuchi, K. Nakakuki, T. Takeda, Lab Invest. 65, 104 (1991)Google Scholar
  35. 35.
    Y.C. Kudva, C. Mueske, P.C. Butler, N.L. Eberhardt, Biochem. J. 331, 809 (1998)Google Scholar
  36. 36.
    S.B. Padrick, A.D. Miranker, Biochemistry 41, 4694 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lauren E. Buchanan
    • 1
  • Emily B. Dunkelberger
    • 1
  • Martin T. Zanni
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations