Advertisement

Well-Nestedness Properly Subsumes Strict Derivational Minimalism

  • Makoto Kanazawa
  • Jens Michaelis
  • Sylvain Salvati
  • Ryo Yoshinaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6736)

Abstract

Minimalist grammars (MGs) constitute a mildly context-sensitive formalism when being equipped with a particular locality condition (LC), the shortest move condition. In this format MGs define the same class of derivable string languages as multiple context-free grammars (MCFGs). Adding another LC to MGs, the specifier island condition (SPIC), results in a proper subclass of derivable languages. It is rather straightforward to see this class is embedded within the class of languages derivable by some well-nested MCFG (MCFG wn ). In this paper we show that the embedding is even proper. We partially do so adapting the methods used in [13] to characterize the separation of MCFG wn -languages from MCFG-languages by means of a “simple copying” theorem. The separation of strict derivational minimalism from well-nested MCFGs is then characterized by means of a “simple reverse copying” theorem. Since for MGs, well-nestedness seems to be a rather ad hoc restriction, whereas for MCFGs, this holds regarding the SPIC, our result may suggest we are concerned here with a structural difference between MGs and MCFGs which cannot immediately be overcome in a non-stipulated manner.

Keywords

Derivation Tree Island Condition Tree Transducer CSLI Publication Proper Subclass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  2. 2.
    Chomsky, N.: Derivation by phase. In: Kenstowicz, M. (ed.) Ken Hale. A Life in Language, pp. 1–52. MIT Press, Cambridge (2001)Google Scholar
  3. 3.
    Chomsky, N.: On phases. In: Freidin, R., Otero, C., Zubizaretta, M.L. (eds.) Foundational Issues in Linguistic Theory, pp. 133–166. MIT Press, Cambridge (2008)Google Scholar
  4. 4.
    Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way machines. Journal of Computer and System Sciences 20, 150–202 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gärtner, H.-M., Michaelis, J.: A note on the complexity of constraint interaction: Locality conditions and minimalist grammars. In: Blache, P., Stabler, E., Busquets, J., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 114–130. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimalist grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion = Language?, pp. 161–195. Mouton de Gruyter, Berlin (2007)Google Scholar
  7. 7.
    Gazdar, G.: Unbounded dependencies and coordinate structure. Linguistic Inquiry 12, 155–184 (1981)Google Scholar
  8. 8.
    Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    de Groote, P., Morrill, G., Retoré, C. (eds.): LACL 2001. LNCS (LNAI), vol. 2099. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Harkema, H.: A characterization of minimalist languages. In: de Groote, P. et al (eds.) [9], pp. 193–211Google Scholar
  11. 11.
    Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky, A.M. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press, New York (1985)CrossRefGoogle Scholar
  12. 12.
    Kanazawa, M.: The convergence of well-nested mildly context-sensitive grammar formalisms (2009), invited talk held at FG-2009, BordeauxGoogle Scholar
  13. 13.
    Kanazawa, M., Salvati, S.: The copying power of well-nested multiple context-free grammars. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 344–355. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kobele, G.M.: Generating Copies. An investigation into structural identity in language and grammar. Ph.D. thesis, University of California, Los Angeles (2006)Google Scholar
  15. 15.
    Kobele, G.M., Michaelis, J.: Two type-0 variants of minimalist grammars. In: Rogers, J. (ed.) [25], pp. 81–91Google Scholar
  16. 16.
    Koopman, H., Szabolcsi, A.: Verbal Complexes. MIT Press, Cambridge (2000)Google Scholar
  17. 17.
    Kracht, M.: The Mathematics of Language. Mouton de Gruyter, Berlin (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat, M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Michaelis, J.: On Formal Properties of Minimalist Grammars. Linguistics in Potsdam 13, Universitätsbibliothek, Publikationsstelle, Potsdam, Ph.D. thesis (2001)Google Scholar
  20. 20.
    Michaelis, J.: Transforming linear context-free rewriting systems into minimalist grammars. In: de Groote, et al (eds.) [9], pp. 228–244Google Scholar
  21. 21.
    Michaelis, J.: Observations on strict derivational minimalism. Electronic Notes in Theoretical Computer Science 53, 192–209 (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Michaelis, J.: An additional observation on strict derivational minimalism. In: Rogers, J. (ed.) [25], pp. 101–111Google Scholar
  23. 23.
    Mönnich, U.: Some remarks on mildly context-sensitive copying. In: Hanneforth, T., Fanselow, G. (eds.) Language and Logos, pp. 367–389. Akad. Verlag, Berlin (2010)Google Scholar
  24. 24.
    Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theoretical Computer Science 223, 87–120 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rogers, J.: Proceedings of FG-MoL 2005. CSLI Publications, Stanford (2009)Google Scholar
  26. 26.
    Salvati, S.: Minimalist grammars in the light of logic. Research Report, INRIA Bordeaux (2011), http://hal.inria.fr/inria-00563807/en/
  27. 27.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88, 191–229 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  29. 29.
    Stabler, E.P.: Remnant movement and complexity. In: Bouma, G., Kruijff, G.J.M., Hinrichs, E., Oehrle, R.T. (eds.) Constraints and Resources in Natural Language Syntax and Semantics, pp. 299–326. CSLI Publications, Stanford (1999)Google Scholar
  30. 30.
    Stabler, E.P.: Recognizing head movement. In: de Groote, P., et al [9], pp. 245–260Google Scholar
  31. 31.
    Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.) Oxford Handbook of Linguistic Minimalism, pp. 616–641. Oxford University Press, New York (2011)Google Scholar
  32. 32.
    Stabler, E.P., Keenan, E.L.: Structural similarity within and among languages. Theoretical Computer Science 293, 345–363 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of the Association for Computational Linguistics, Stanford, CA, pp. 104–111. ACL (1987)Google Scholar
  34. 34.
    Villemonte de la Clergerie, É.: Parsing mcs languages with thread automata. In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammars and Related Formalisms, Venezia, pp. 101–108 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Makoto Kanazawa
    • 1
  • Jens Michaelis
    • 2
  • Sylvain Salvati
    • 3
  • Ryo Yoshinaka
    • 4
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.Bielefeld UniversityBielefeldGermany
  3. 3.INRIA Bordeaux – Sud-OuestTalenceFrance
  4. 4.Japan Science and Technology AgencyERATO MINATO ProjectSapporoJapan

Personalised recommendations