Contextual Analysis of Word Meanings in Type-Theoretical Semantics

  • Zhaohui Luo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6736)


Word meanings are context sensitive and may change in different situations. In this paper, we consider how contexts and the associated contextual meanings of words may be represented in type-theoretical semantics, the formal semantics based on modern type theories. It is shown, in particular, that the framework of coercive subtyping provides various useful tools in the representation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Asher, N.: A type driven theory of predication with complex types. Fundamenta Infor. 84(2) (2008)Google Scholar
  3. 3.
    Asher, N.: Lexical Meaning in Context: A Web of Words, draft, CUP (2010)Google Scholar
  4. 4.
    Bailey, A.: The Machine-checked Literate Formalisation of Algebra in Type Theory. Ph.D. thesis, University of Manchester (1999)Google Scholar
  5. 5.
    Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and universes. Journal of Automated Reasoning 27(1), 3–27 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1) (1940)Google Scholar
  7. 7.
    Cooper, R.: Records and record types in semantic theory. J. Logic and Compututation 15(2) (2005)Google Scholar
  8. 8.
    Cooper, R.: Copredication, dynamic generalized quantification and lexical innovation by coercion. Proceedings of GL 2007, the Fourth International Workshop on Generative Approaches to the Lexicon (2007)Google Scholar
  9. 9.
    The Coq Development Team: The Coq Proof Assistant Reference Manual (Version 8.1), INRIA (2007)Google Scholar
  10. 10.
    Curry, H., Feys, R.: Combinatory Logic, vol. 1. North-Holland, Amsterdam (1958)zbMATHGoogle Scholar
  11. 11.
    Feferman, S.: Predicativity. In: Shapiro, S. (ed.) The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford Univ. Press, Oxford (2005)Google Scholar
  12. 12.
    Fodor, J.A., Lepore, E.: The emptiness of the lexicon: Reflections on james pustejovskys the generative lexicon. Linguistic Inquiry 29(2), 269–288 (1998)CrossRefGoogle Scholar
  13. 13.
    Francez, N., Dyckhoff, R.: Proof-theoretic semantics for a natural language fragment. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10. LNCS, vol. 6149, pp. 56–71. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Howard, W.A.: The formulae-as-types notion of construction. In: Hindley, J., Seldin, J. (eds.) To H. B. Curry: Essays on Combinatory Logic. Academic Press, London (1980)Google Scholar
  15. 15.
    Kahle, R., Schroder-Heister, P. (eds.) Synthese, vol. 148(3) (2006)Google Scholar
  16. 16.
    Luo, Z.: A higher-order calculus and theory abstraction. Information and Computation 90(1) (1991)Google Scholar
  17. 17.
    Luo, Z.: Program specification and data refinement in type theory. Mathematical Structures in Computer Science 3(3) (1993)Google Scholar
  18. 18.
    Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Oxford Univ. Press, Oxford (1994)zbMATHGoogle Scholar
  19. 19.
    Luo, Z.: Coercive subtyping in type theory. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Luo, Z.: Coercive subtyping. J. of Logic and Computation 9(1), 105–130 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Semantics and Linguistic Theory 20 (SALT 20), Vancouver (2010)Google Scholar
  22. 22.
    Luo, Z., Callaghan, P.: Coercive subtyping and lexical semantics (extended abstract). In: Logical Aspects of Computational Linguistics (LACL 1998) (1998)Google Scholar
  23. 23.
    Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual. LFCS Report ECS-LFCS-92-211, Dept. of Computer Science, Univ. of Edinburgh (1992)Google Scholar
  24. 24.
    Marlet, R.: When the generative lexicon meets computational semantics. In: 4th Inter. Workshop on Generative Approaches to the Lexicon (2007)Google Scholar
  25. 25.
    Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)Google Scholar
  26. 26.
    The Matita proof assistant (2008),
  27. 27.
    Montague, R.: Formal Philosophy. Yale University Press, New Haven (1974)Google Scholar
  28. 28.
    Navigli, R.: Word sense disambiguation: a survey. ACM Computing Surveys 41(2) (2009)Google Scholar
  29. 29.
    Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type Theory: An Introduction. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  30. 30.
    Nunberg, G.: Transfers of meaning. J. of Semantics 12(2) (1995)Google Scholar
  31. 31.
    Pustejovsky, J.: The Generative Lexicon. MIT, Cambridge (1995)Google Scholar
  32. 32.
    Pustejovsky, J.: Generativity and explanation in semantics: A reply to fodor and lepore. Linguistic Inquiry 29(2), 289–311 (1998)CrossRefGoogle Scholar
  33. 33.
    Pustejovsky, J.: The semantics of lexical underspecification. Folia Linguistica (1998)Google Scholar
  34. 34.
    Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  35. 35.
    Saïbi, A.: Typing algorithm in type theory with inheritance. In: POPL 1997 (1997)Google Scholar
  36. 36.
    Strachey, C.: Fundamental concepts in programming languages. Higher-Order and Symbolic Computation 13(1-2) (2000), (Paper based on 1967 lectures)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zhaohui Luo
    • 1
  1. 1.Dept of Computer ScienceRoyal Holloway, Univ of LondonEghamU.K.

Personalised recommendations