Network Verification via Routing Table Queries

  • Evangelos Bampas
  • Davide Bilò
  • Guido Drovandi
  • Luciano Gualà
  • Ralf Klasing
  • Guido Proietti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6796)


We address the problem of verifying the accuracy of a map of a network by making as few measurements as possible on its nodes. This task can be formalized as an optimization problem that, given a graph G = (V,E), and a query model specifying the information returned by a query at a node, asks for finding a minimum-size subset of nodes of G to be queried so as to univocally identify G. This problem has been faced w.r.t. a couple of query models assuming that a node had some global knowledge about the network. Here, we propose a new query model based on the local knowledge a node instead usually has. Quite naturally, we assume that a query at a given node returns the associated routing table, i.e., a set of entries which provides, for each destination node, a corresponding (set of) first-hop node(s) along an underlying shortest path. First, we show that any network of n nodes needs Ω(loglogn) queries to be verified. Then, we prove that there is no o(logn)-approximation algorithm for the problem, unless \(\mbox{\sf P}=\mbox{\sf NP}\), even for networks of diameter 2. On the positive side, we provide an O(logn)-approximation algorithm to verify a network of diameter 2, and we give exact polynomial-time algorithms for paths, trees, and cycles of even length.


Short Path Destination Node Vertex Cover Distinct Vertex Minimum Cardinality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffman, M., Mihal’ák, M., Ram, S.: Network discovery and verification. IEEE Journal on Selected Areas in Communications 24(12), 2168–2181 (2006)CrossRefGoogle Scholar
  2. 2.
    Bejerano, Y., Rastogi, M.: Rubust monitoring of link delays and faults in IP networks. In: 22nd IEEE Int. Conf. on Comp. Comm (INFOCOM 2003), pp. 134–144 (2003)Google Scholar
  3. 3.
    Bilò, D., Erlebach, T., Mihal’ák, M., Widmayer, P.: Discovery of network properties with all-shortest-paths queries. Theoretical Computer Science 411(14-15), 1626–1637 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bshouty, N.H., Mazzawi, H.: Reconstructing weighted graphs with minimal query complexity. Theoretical Computer Science 412(19), 1782–1790 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Choi, S.-S., Kim, J.H.: Optimal query complexity bounds for finding graphs. Artificial Intelligence 174(9-10), 551–569 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dall’Asta, L., Alvarez-Hamelin, J.I., Barrat, A., Vázquez, A., Vespignani, A.: Exploring networks with traceroute-like probes: Theory and simulations. Theoretical Computer Science 355(1), 6–24 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Erlebach, T., Hall, A., Mihal’ák, M.: Approximate Discovery of Random Graphs. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 82–92. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  9. 9.
    Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: 19th IEEE Int. Conf. on Comp. Comm (INFOCOM 2000), pp. 1371–1380 (2000)Google Scholar
  10. 10.
    Gravier, S., Klasing, R., Moncel, J.: Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs. Algorithmic Operations Research 3, 43–50 (2008)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20, 374–387 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Harary, F.: A characterization of block graphs. Canad. Math. Bull. 6(1), 1–6 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Harary, F., Melter, R.: The metric dimension of a graph. Ars Combinatoria, 191–195 (1976)Google Scholar
  14. 14.
    Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Applied Mathematics 70, 217–229 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Suomela, J.: Approximability of identifying codes and locating-dominating codes. Information Processing Letters 103(1), 28–33 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Evangelos Bampas
    • 1
  • Davide Bilò
    • 2
  • Guido Drovandi
    • 3
  • Luciano Gualà
    • 4
  • Ralf Klasing
    • 1
  • Guido Proietti
    • 3
    • 5
  1. 1.LaBRI, CNRS / INRIA / University of BordeauxBordeauxFrance
  2. 2.Dip. di Teorie e Ricerche dei Sistemi CulturaliUniversity of SassariItaly
  3. 3.Istituto di Analisi dei Sistemi ed Informatica, CNRRomeItaly
  4. 4.Dipartimento di MatematicaUniversity of Tor VergataRomeItaly
  5. 5.Dipartimento di InformaticaUniversity of L’AquilaL’AquilaItaly

Personalised recommendations