Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications

  • Xin-She Yang
  • Suash Deb
  • Simon Fong
Part of the Communications in Computer and Information Science book series (CCIS, volume 136)


Business optimization is becoming increasingly important because all business activities aim to maximize the profit and performance of products and services, under limited resources and appropriate constraints. Recent developments in support vector machine and metaheuristics show many advantages of these techniques. In particular, particle swarm optimization is now widely used in solving tough optimization problems. In this paper, we use a combination of a recently developed Accelerated PSO and a nonlinear support vector machine to form a framework for solving business optimization problems. We first apply the proposed APSO-SVM to production optimization, and then use it for income prediction and project scheduling. We also carry out some parametric studies and discuss the advantages of the proposed metaheuristic SVM.


Accelerated PSO business optimization metaheuristics PSO support vector machine project scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptural comparision. ACM Comput. Surv. 35, 268–308 (2003)CrossRefGoogle Scholar
  2. 2.
    Chatterjee, A., Siarry, P.: Nonlinear inertia variation for dynamic adaptation in particle swarm optimization. Comp. Oper. Research 33, 859–871 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  4. 4.
    Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Res. Log. 49, 433–448 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Howley, T., Madden, M.G.: The genetic kernel support vector machine: description and evaluation. Artificial Intelligence Review 24, 379–395 (2005)CrossRefGoogle Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison Wesley, Reading (1989)zbMATHGoogle Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization, in. In: Proc. of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: Swarm intelligence. Academic Press, London (2001)Google Scholar
  9. 9.
    Kim, K.: Financial forecasting using support vector machines. Neurocomputing 55, 307–319 (2003)CrossRefGoogle Scholar
  10. 10.
    Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, pp. 202–207. AAAI Press, Menlo Park (1996), Google Scholar
  11. 11.
    Kolisch, R., Sprecher, A.: PSPLIB - a project scdeluing problem library, OR Software-ORSEP (operations research software exchange prorgam) by H. W. Hamacher. Euro. J. Oper. Res. 96, 205–216 (1996)CrossRefGoogle Scholar
  12. 12.
    Kolisch, R., Sprecher, A.: The Library PSBLIB,
  13. 13.
    Liu, L.-X., Zhuang, Y., Liu, X.Y.: Tax forecasting theory and model based on SVM optimized by PSO. Expert Systems with Applications 38, 116–120 (2011)CrossRefGoogle Scholar
  14. 14.
    Lu, N., Zhou, J.Z., He, Y.: Y., Liu Y., Particle Swarm Optimization for Parameter Optimization of Support Vector Machine Model. In: 2009 Second International Conference on Intelligent Computation Technology and Automation, pp. 283–284. IEEE publications, Los Alamitos (2009)CrossRefGoogle Scholar
  15. 15.
    Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained project scheduling problem (RCPSP). In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 557–588 (2002)Google Scholar
  16. 16.
    Pai, P.F., Hong, W.C.: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electric Power Sys. Res. 74, 417–425 (2005)CrossRefGoogle Scholar
  17. 17.
    Platt, J.C.: Sequential minimal optimization: a fast algorithm for training support vector machines, Techical report MSR-TR-98014, Microsoft Research (1998)Google Scholar
  18. 18.
    Plate, J.C.: Fast training of support vector machines using sequential minimal optimization, in. In: Scholkopf, B., Burges, C.J., Smola, A.J. (eds.) Advances in Kernel Methods – Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)Google Scholar
  19. 19.
    Shi, G.R.: The use of support vector machine for oil and gas identification in low-porosity and low-permeability reservoirs. Int. J. Mathematical Modelling and Numerical Optimisation 1, 75–87 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Shi, G.R., Yang, X.-S.: Optimization and data mining for fracture prediction in geosciences. Procedia Computer Science 1, 1353–1360 (2010)Google Scholar
  21. 21.
    Smola, A. J., Schölkopf, B.: A tutorial on support vector regression, (1998),
  22. 22.
    Tchomté, S.K., Gourgand, M., Quilliot, A.: Solving resource-constrained project scheduling problem with particle swarm optimization. In: Proceeding of 3rd Multidsciplinary Int. Scheduling Conference (MISTA 2007), Paris, August 28 - 31, pp. 251–258 (2007)Google Scholar
  23. 23.
    Valls, V., Ballestin, F., Quintanilla, S.: A hybrid genetic algorithm for the resource-constrained project scheduling problem. Euro. J. Oper. Res (2007), doi:10.1016/j.ejor.2006.12.033Google Scholar
  24. 24.
    Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer, New York (1982) (in Russian)zbMATHGoogle Scholar
  25. 25.
    Vapnik, V.: The nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  26. 26.
    Scholkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.: Comparing support vector machine with Gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Processing 45, 2758–2765 (1997)CrossRefGoogle Scholar
  27. 27.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  28. 28.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights, in. In: Proceeings of World Congress on Nature & Biologically Inspired Computing, NaBIC 2009, pp. 210–214. IEEE Publications, USA (2009)CrossRefGoogle Scholar
  30. 30.
    Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Mathematical Modelling and Numerical Optimisation 1, 330–343 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-inspired Computation 2, 78–84 (2010)CrossRefGoogle Scholar
  32. 32.
    Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. John Wiley & Sons, Chichester (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xin-She Yang
    • 1
  • Suash Deb
    • 2
  • Simon Fong
    • 3
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Department of Computer Science & EngineeringC.V. Raman College of EngineeringBhubaneswarIndia
  3. 3.Department of Computer and Information Science, Faculty of Science and TechnologyUniversity of MacauTaipaMacau

Personalised recommendations