Fuzzy Models for Complex Social Systems Using Distributed Agencies in Poverty Studies

  • Bogart Yail Márquez
  • Manuel Castanon-Puga
  • Juan R. Castro
  • E. Dante Suarez
  • Sergio Magdaleno-Palencia
Part of the Communications in Computer and Information Science book series (CCIS, volume 179)

Abstract

There are several ways to model a complex social system, as is the poverty of an entity, the object of this paper is to present a methodology consisting of several techniques that offers to solve complex social problems with soft computing.

Keywords

Complex Social Systems Data Mining Neuro-Fuzzy Distributed Agencies Poverty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akindola, R.B.: Towards a Definition of Poverty Poor People’s Perspectives and Implications for Poverty Reduction. Journal of Developing Societies 25, 121–150 (2009)CrossRefGoogle Scholar
  2. 2.
    Ding, Y.-C., Zhang, Y.-K.: The Simulation of Urban Growth Applying Sleuth Ca Model to the Yilan Delta in Taiwan. Journal Alam Bina, Jilid 09(01) (2007)Google Scholar
  3. 3.
    Márquez, B.Y., et al.: Methodology for the Modeling of Complex Social System Using Neuro-Fuzzy and Distributed Agencies. Journal of Selected Areas in Software Engineering, JSSE (2011)Google Scholar
  4. 4.
    Sigmund, K.: Complex Adaptive Systems and the Evolution of Reciprocation, vol. 16 (1998)Google Scholar
  5. 5.
    Brownlee, J.: Complex Adaptive Systems Technical Report 070302A (2007)Google Scholar
  6. 6.
    Miler, J., Page, S.: Complex Adptative Systems. An introduction to computational models of social life, 284 (2007)Google Scholar
  7. 7.
    Zaded, L.A.: Fuzzy sets. Information and Control 8 (1965)Google Scholar
  8. 8.
    Suarez, E.D., Rodríguez-Díaz, A., Castañón-Puga, M.: Fuzzy Agents, in Soft Computing for Hybrid Intelligent Systems. In: Castillo, O., et al. (eds.), pp. 269–293. Springer, Berlin (2007)Google Scholar
  9. 9.
    Drennan, M.: The Human Science of Simulation: a Robust Hermeneutics for Artificial Societies. Journal of Artificial Societies and Social Simulation 8(1) (2005)Google Scholar
  10. 10.
    Marquez, B.Y., et al.: On the Modeling of a Sustainable System for Urban Development Simulation Using Data Mining and Distributed Agencies. In: 2nd International Conference on Software Engineering and Data Mining 2010. IEEE, Chengdu (2010)Google Scholar
  11. 11.
    Dubey, P., Chen, Z., Shi, Y.: Using Branch-Grafted R-trees for Spatial Data Mining. In: International Conference on Computational Science (ICCS), pp. 657–660. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Peng, Y., et al.: A Descriptive Framework for the Field Of Data Mining and Knowledge Discovery. International Journal of Information Technology & Decision Making 7, 639–682 (2008)CrossRefGoogle Scholar
  13. 13.
    INEGI, II Conteo de Población y Vivienda 2005. Instituto Nacional de Estadística Geografía e Informática (2006)Google Scholar
  14. 14.
    Wilensky, U.: NetLogo Software (1999), http://ccl.northwestern.edu/netlogo
  15. 15.
    Castro, J.R., Castillo, O., Martínez, L.G.: Interval Type-2 Fuzzy Logic Toolbox. Engineering Letters 15 (2007)Google Scholar
  16. 16.
    Rantala, J., Koivisto, H.: Optimised Subtractive Clustering for Neuro-Fuzzy Models. In: 3rd WSEAS International Conference on Fuzzy Sets and Fuzzy Systems, Interlaken, Switzerland (2002)Google Scholar
  17. 17.
    Stefanescu, S.: Applying Nelder Mead’s Optimization Algorithm for Multiple Global Minima. Romanian Journal of Economic Forecasting, 97–103 (2007)Google Scholar
  18. 18.
    Gilbert, N.: Agent-Based Models. Sage Publications Inc., Los Angeles (2007)Google Scholar
  19. 19.
    Wooldridge, M., Jennings, N.: Intelligent Agents: Theory and Practice. Knowledge Engineering Review (1995)Google Scholar
  20. 20.
    Botti, V., Julián, V.: Estudio de métodos de desarrollo de sistemas multiagente. In: Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial (2003)Google Scholar
  21. 21.
    Russell, S., Norvig, P.: Inteligencia Artificial. Un Enfoque Moderno. 2o ed, ed. Pearson Prentice Hall, M. Pearson Educacion. S.A (2004)Google Scholar
  22. 22.
    Suarez, E.D., Rodríguez-Díaz, A., Castañón-Puga, M.: Fuzzy Agents. In: Castillo, O., et al. (eds.) Soft Computing for Hybrid Intelligent, Springer, Heidelberg (2007)Google Scholar
  23. 23.
    Gilbert, N.: Computational social science: Agent-based social simulation. In: Phan, D., Amblard, F. (eds.) Agent-Based Modelling and Simulation, pp. 115–134. Bardwell, Oxford (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bogart Yail Márquez
    • 1
  • Manuel Castanon-Puga
    • 1
  • Juan R. Castro
    • 1
  • E. Dante Suarez
    • 2
  • Sergio Magdaleno-Palencia
    • 1
  1. 1.Chemistry and Engineering FacultyBaja California Autonomous UniversityTijuanaMéxico
  2. 2.Department of Business AdministrationTrinity UniversitySan AntonioUSA

Personalised recommendations