Quartz Regeneration and its Use as a Repository of Genetic Information

  • Ulf KempeEmail author
  • Jens Götze
  • Enchbat Dombon
  • Thomas Monecke
  • Mikhail Poutivtsev
Part of the Springer Geology book series (SPRINGERGEOL)


Quartz represents one of the most widespread minerals and is widely used in geosciences to reconstruct physic-chemical conditions of rock and mineral formation. However, interpretation of analytical data may be limited by the ability of quartz to regenerate during secondary alteration processes occurring under metamorphic or hydrothermal conditions. This behaviour distinguishes quartz from most minerals commonly associated with. Primary genetic information is obliterated during quartz regeneration. This includes features related to the real structure of quartz, but also to fluid and mineral inclusions. The present contribution examines examples covering various fields of mineral research, namely the genetic interpretation of trace element content in quartz, quartz provenance analysis using cathodoluminescence (CL) colour imaging, and the analysis of mineral and fluid inclusions in quartz. It is demonstrated in all cases that care needs to be taken when interpreting genetic information encoded. Distinction of features related to primary growth or secondary alteration is not simple and requires application of complementary analytical techniques.



We gratefully acknowledge reviews by Torsten Graupner and Brian Rusk, which helped us to significantly improve the manuscript. We thank Dieter Wolf for useful discussion on the behaviour of quartz. The trace element analyses would not have been possible without the analytical support by Gisela Bombach and Werner Klemm.


  1. Agangi A, McPhie J, Kamenetsky VS (2011) Magma chamber dynamics in a silicic LIP revealed by quartz: the Mesoproterozoic Gawler Range Volcanics. Lithos 126:68–83Google Scholar
  2. Agel A, Petrov I (1990) Substitutional aluminium in the quartz lattice as indicator for the temperature of formation. Eur J Mineral 2 (Bh.1):144 (abstract, in German)Google Scholar
  3. Bakker RJ (2009) Reequilibration of fluid inclusions: bulk diffusion. Lithos 112:277–288Google Scholar
  4. Bambauer HU (1961) Spurenelementgehalte und γ-Farbzentren in Quarzen aus Zerrklüften der Schweizer Alpen. Schweiz Mineral Petrol Mitt 41:335–369Google Scholar
  5. Barnicoat AC, Henderson IHC, Knipe RJ, Yardley BWD, Napier RW, Fox NPC, Kenyon AK, Mutingh DJ, Strydom D, Winkler KS, Lawrence SR, Cornford C (1997) Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386:820–824Google Scholar
  6. Barton JM, Wenner DB, Hallbauer DK (1992) Oxygen isotopic study of the nature and provenance of large quartz and chert clasts in gold-bearing conglomerates of South Africa. Geology 20:1123–1126Google Scholar
  7. Blatt H (1987) Oxygen isotopes and the origin of quartz. J Sediment Petrol 57:373–377Google Scholar
  8. Bodnar RJ (2003a) Introduction to fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Canada, Short Course vol 32, Quebec, pp 1–8Google Scholar
  9. Bodnar RJ (2003b) Reequilibration of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Canada, Short Course vol 32, Quebec, pp 213–230Google Scholar
  10. Boggs S, Kwon YI, Goles GG, Rusk BG, Krinsley D, Seyedolali A (2002) Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination. J Sediment Res 72:408–415Google Scholar
  11. Boiron MC, Essarraj S, Sellier E, Cathelineau M, Lespinasse M, Poty B (1992) Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence. Geochim Cosmochim Acta 56:175–185Google Scholar
  12. Botis S, Nokhrin SM, Pan Y, Xu Y, Bonli T (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1580Google Scholar
  13. Botis S, Pan Y, Bonli T, Xu Y, Zhang A, Nokhrin S, Sopuck V (2006) Natural radiation-induced damage in quartz. II. Distribution and implications for uranium mineralization in the Athabasca basin, Saskatchewan, Canada. Can Mineral 44:1387–1402Google Scholar
  14. Bottrell SH, Yardley B, Buckley F (1988) A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull Minéral 111:279–290Google Scholar
  15. Breiter K, Müller A (2009) Evolution of rare-metal granitic magmas documented by quartz chemistry. Eur J Mineral 21:335–346Google Scholar
  16. Campbell AR, Panter KS (1990) Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael`s Mount and Cligga Head, Cornwall England. Geochim Cosmochim Acta 54:673–681Google Scholar
  17. Campbell AR, Robinson-Cook S (1987) Infrared fluid inclusion microthermometry on coexisting wolframite and quartz. Econ Geol 82:1640–1645Google Scholar
  18. Campbell AR, Robinson-Cook S, Amindays C (1988) Observation of fluid inclusions in wolframite from Panasqueira, Portugal. Bull Minéral 111:251–256Google Scholar
  19. Charoy B, Noronha F (1996) Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). J Petrol 37:73–94Google Scholar
  20. Cherniak DJ (2010) Diffusion in quartz, melilite, silicate perovskite, and mullite. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:735–756Google Scholar
  21. Claffy EW, Ginther RJ (1959) Red-luminescing quartz. Am Mineral 44:987–994Google Scholar
  22. Dennen WH (1966) Stoichiometric substitution in natural quartz. Geochim Cosmochim Acta 30:1235–1241Google Scholar
  23. Dennen WH, Blackburn WN, Quesada A (1970) Aluminium in quartz as a geothermometer. Contrib Mineral Petrol 27:332–342Google Scholar
  24. Doukhan JC, Trépied L (1988) Plastic deformation of quartz single crystals. Bull Minéral 108:97–123Google Scholar
  25. Enchbat D (2007) Die erzbildenden Fluide in den Au-W-Mineralisationen des Mongolischen Altai: Untersuchungen zu Fluideinschlüssen und Spurenelementchemismus von Erz- und Gangmineralen. Freiberg Forschungsh C520, TU Bergakademie Freiberg, 101 ppGoogle Scholar
  26. Enchbat D, Kempe U, Dandar S, Wolf D (1999) Fluid inclusion characteristics and trace element chemistry of ore and vein minerals from the Au-W deposits in Altai tectonic zone of Mongolian Altai. In: Lüders V, Schmidt-Mumm A, Thomas R (eds) ECROFI XV: European current research on fluid inclusions: abstracts and program, vol 99(6). Alfred-Wegener-Stiftung, Potsdam, Terra nostra, pp 93–94Google Scholar
  27. Frezzotti ML (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55:273–299Google Scholar
  28. Frimmel HE, Gartz VH (1997) Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits. Mineral Deposita 32:523–530Google Scholar
  29. Frimmel HE, Groves DI, Kirk J, Ruiz J, Chesley J, Minter WEL (2005) The formation and preservation of the Witwatersrand gold fields, the world′s largest gold province. Econ Geol 100th Anniversary Volume:769–797Google Scholar
  30. Füchtbauer H, Leggewie R, Gockeln C, Heinemann C, Schröder P (1982) Methoden der Quarzuntersuchung, angewandt auf mesozoische und pleistozäne Sandsteine und Sande. N Jb Geol Paläont Mh 193–210Google Scholar
  31. Gartz VH, Frimmel HE (1999) Complex metasomatism of an Archean placer in the Witwatersrand basin, South Africa: the Ventersdorp Contact reef—a hydrothermal aquifer? Econ Geol 94:689–706Google Scholar
  32. Gavrilenko VV, Kempe U, Gaidamako IM (1998) Formation of chemical heterogeneity in minerals during their metasomatic growth and replacement (on the example of scheelitization of wolframite). Zapiski Vserossijskogo Mineralogicheskogo Obshchestva 127(6):75–78 (in Russian)Google Scholar
  33. Gavrilenko V, Morozov M, Kempe U, Smolenskiy V, Wolf D (1997) Unusual REE distribution patterns in fluorites from Sn-W deposits of the quartz-cassiterite and quartz-wolframite type. In: Novák M, Janoušek V, Košler J (eds) MAEGS—10, challenges to chemical geology. J Czech Geol Soc 42(3):36 (abstract)Google Scholar
  34. Gibson RL, Reimold WU (1999) The significance of the Vredefort Dome for the thermal and structural evolution of the Witwatersrand basin, South Africa. Mineral Petrol 66:5–23Google Scholar
  35. Girard JP, Deynoux M (1991) Oxygen isotope study of diagenetic quartz overgrowths from the upper Proterozoic quartzites of western Mali, Taoudeni basin: implications for conditions of quartz cementation. J Sediment Petrol 61:406–418Google Scholar
  36. Goldstein RH (2001) Fluid inclusions in sedimentary and diagenetic systems. Lithos 55:159–193Google Scholar
  37. Götte T, Pettke T, Ramseyer K, Koch-Müller M, Mullis J (2011) Cathodoluminescence properties and trace element signature of hydrothermal quartz: a fingerprint of growth dynamics. Am Mineral 96:802–813Google Scholar
  38. Götze J (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Freiberg Forschungsh C485, TU Bergakademie Freiberg, 128 ppGoogle Scholar
  39. Götze J, Plötze M (1997) Investigation of trace-element distribution in detrital quartz by electron paramagnetic resonance (EPR). Eur J Mineral 9:529–537Google Scholar
  40. Götze J, Zimmerle W (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contrib Sediment Petrol 21, Schweizerbart′sche Verlagsbuchhandlung, Nägele & Obermiller, Stuttgart, 91 ppGoogle Scholar
  41. Götze J, Plötze M, Fuchs H, Habermann D (1999) Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineral Mag 63(2):149–163Google Scholar
  42. Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim Cosmochim Acta 68:3741–3759Google Scholar
  43. Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review. Mineral Petrol 71:225–250Google Scholar
  44. Graupner T, Kempe U, Dombon E, Pätzold O, Leeder O, Spooner ETC (1999) Fluid regime and ore formation in the tungsten(-yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten-tin ore systems. Chem Geol 154:21–58Google Scholar
  45. Graupner T, Götze J, Kempe U, Wolf D (2000) CL for characterizing quartz and trapped fluid inclusions in mesothermal quartz veins: Muruntau Au ore deposit Uzbekistan. Mineral Mag 64(6):1007–1016Google Scholar
  46. Griggs DT, Blacic JD (1965) Quartz: anomalous weakness of synthetic crystals. Science 147:292–295Google Scholar
  47. Hallbauer DK (1992) The use of selected trace elements in vein quartz and quartz pebbles in identifying processes of formation and source rocks. Proc Geol Soc South Africa, Bloemfontain, 157–159Google Scholar
  48. Haßler S, Kempe U, Monecke T, Götze J (2005) Trace element content of quartz from the Ehrenfriedersdorf Sn-W deposit, Germany: results of an acid-wash procedure. In: Mao Y, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin, pp 397–400Google Scholar
  49. Higgins NC (1980) Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions. Can J Earth Sci 17:823–830Google Scholar
  50. Higgins NC (1985) Wolframite deposition in a hydrothermal vein system: the Gray River tungsten prospect, Newfoundland, Canada. Econ Geol 80:1297–1327Google Scholar
  51. Hösel G (1994) Das Zinnerz-Lagerstättengebiet Ehrenfriedersdorf/Erzgebirge. Sächsisches Landesamt für Umwelt und Geologie, Radebeul und Sächsisches Oberbergamt, Freiberg, 196 ppGoogle Scholar
  52. Jolley SJ, Henderson HC, Barnicoat AC, Fox PC (1999) Thrust-fracture network and hydrothermal gold mineralization: Witwatersrand Basin, South Africa. In: McCaffery KJW, Lonergan L, Wilkinson JJ (eds) Fractures, fluid flow and mineralization. Geol Soc, vol 155. Spec Publ, London, pp 153–165Google Scholar
  53. Jourdan AL, Vennemann TW, Mullis J, Ramseyer K (2009) Oxygen isotope sector zoning in natural hydrothermal quartz. Mineral Mag 73:615–632Google Scholar
  54. Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–387Google Scholar
  55. Kempe U, Dandar S, Getmanskaya TI, Wolf D (1994) The tungsten-antimony mineralization (Focussed on new occurrences in the Mongolian Altai). In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of Collisional Orogens. Czech Geological Survey, Prague, pp 301–308Google Scholar
  56. Kempe U, Götze J, Dandar S, Habermann D (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): indications from a combined CL-SEM study. Mineral Mag 63(2):165–177Google Scholar
  57. Kouzmanov K, Pettke T, Heinrich CA (2010) Direct analysis of ore-precipitating fluids: combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals. Econ Geol 105:351–373Google Scholar
  58. Kremenetsky AA, Maksimyuk IE, Yushko NA, Kempe U, Poutivtsev M (2005) Trace elements in quartz from conglomerates in the Witwatersrand Basin (South African Republic) and its role in the understanding of the deposit formation. In: Burenko EK, Kremenetsky AA (eds) Prikladnaya Geokhimiya. IMGRE, Moscow, vyp. 7, 1 87–100 (in Russian)Google Scholar
  59. Landtwing MR, Pettke T (2005) Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. Am Mineral 90:122–131Google Scholar
  60. Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib Mineral Petrol 147:615–628Google Scholar
  61. Larsen RB, Jacamon F, Kronz A (2009) Trace element chemistry and textures of quartz during the magmatic hydrothermal transition of Oslo Rift granites. Mineral Mag 73:691–707Google Scholar
  62. Law JDM, Phillips GN (2005) Hydrothermal replacement model for Witwatersrand gold. Econ Geol 100th Anniversary Volume:799–811Google Scholar
  63. Lehmann K, Berger A, Götte T, Ramseyer K, Wiedenbeck M (2009) Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineral Mag 73:633–643Google Scholar
  64. Lehmann K, Pettke T, Ramseyer K (2011) Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman. Chem Geol 280:47–57Google Scholar
  65. Lüders V (1996) Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite): metallogenic implications. Econ Geol 91:1462–1468Google Scholar
  66. McLaren AC, Cook RF, Hyde ST, Tobin RC (1983) The mechanisms of formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Phys Chem Mineral 9:79–94Google Scholar
  67. Minter WEL, Goedhart M, Knight J, Frimmel HE (1993) Morphology of Witwatersrand gold grains from the Basal Reef: evidence for their detrital origin. Econ Geol 88:237–248Google Scholar
  68. Miyoshi N, Yamaguchi Y, Makino K (2005) Successive zoning of Al and H in hydrothermal vein quartz. Am Mineral 90:310–315Google Scholar
  69. Monecke T, Bombach G, Klemm W, Kempe U, Götze J, Wolf D (2000a) Determination of trace elements in the quartz reference material UNS-SpS and in natural quartz samples by ICP-MS. Geostandard Newlett 24:73–81Google Scholar
  70. Monecke T, Monecke J, Mönch W, Kempe U (2000b) Mathematical analysis of rare earth element patterns of fluorites from the Ehrenfriedersdorf tin deposit, Germany: evidence for a hydrothermal mixing process of lanthanides from two different sources. Mineral Petrol 70:235–256Google Scholar
  71. Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth Planet Sci Lett 202:709–724Google Scholar
  72. Monecke T, Kempe U, Trinkler M, Thomas R, Dulski P, Wagner T (2011) Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 39:295–298Google Scholar
  73. Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin D, Stenina NG, Kronz A (2010) Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineral Deposita 45:707–727Google Scholar
  74. Müller A, Wiedenbeck M, Van den Kerkhof AM, Kronz A, Simon K (2003) Trace elements in quartz—a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15:747–763Google Scholar
  75. Novgorodova MI, Veretennikov VM, Boyarskaya RV, Drynkin VI (1984) Geochemistry of trace elements in gold-bearing quartz. Geochem Int 21:101–113Google Scholar
  76. Onasch CM, Vennemann TW (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology 23:1103–1106Google Scholar
  77. Penniston-Dorland SC (2001) Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. Am Mineral 86:652–666Google Scholar
  78. Perny B, Eberhardt P, Ramseyer K, Mullis J, Pankrath R (1992) Microdistribution of Al, Li, and Na in α quartz: possible causes and correlation with short-lived cathodoluminescence. Am Mineral 77:534–544Google Scholar
  79. Phillips GN, Law JDM (2000) Witwatersrand gold fields: geology, genesis, and exploration. Rev Econ Geol 13:439–500Google Scholar
  80. Phillips GN, Myers RE (1989) The Witwatersrand goldfields: Part II. An origin for Witwatersrand gold during metamorphism and associated alteration. Econ Geol Mon 6:598–608Google Scholar
  81. Plötze M (1995) EPR investigations of quartz, scheelite and fluorite from high-thermal trace-metal mineralization (in German). PhD thesis, TU Bergakademie Freiberg, 141 pGoogle Scholar
  82. Poutivtsev M (2001) Bestimmung der Spurenelementgehalte in Konglomeratquarzen aus vererzten und unvererzten Reefs der Au-U-Lagerstätte Witwtersrand (Südafrikanische Republik) im Vergleich mit Konglomeratquarzen aus Vorkommen in Karelien (Russland) Unpubl Diploma thesis, TU Bergakademie Freiberg, 76 ppGoogle Scholar
  83. Poutivtsev M, Kempe U, Götze J, Monecke T, Wolf D, Kremenetsky AA (2001) Cathodoluminescece and trace element characteristics of quartz pebbles from the Witwa-tersrand, South Africa. In: Cathodoluminescence in geosciences: new insights from CL in combination with other techniques, Abstracts. TU Bergakademie Freiberg, pp 101–102Google Scholar
  84. Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of α-quartz. Am Mineral 75:791–800Google Scholar
  85. Richter DK, Götte T, Götze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrol 79:127–166Google Scholar
  86. Robb LJ, Meyer FM (1990) The nature of the Witwatersrand hinterland: conjectures on the source area problem. Econ Geol 85:511–536Google Scholar
  87. Robb LJ, Meyer FM (1991) A contribution to recent debate concerning epigenetic versus syngenetic mineralization processes in the Witwatersrand basin. Econ Geol 86:396–401Google Scholar
  88. Roedder E (1984) Fluid inclusions. Reviews in Mineralogy, vol 12. Mineralogical Society of America, Washington, 646 ppGoogle Scholar
  89. Rusk BG, Reed MH (2002) Scanning electron microscope–cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30:727–730Google Scholar
  90. Rusk BG, Koenig A, Lowers HA (2011) Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation inductively coupled plasma mass spectrometry. Am Mineral 96:703–708Google Scholar
  91. Rusk BG, Lowers H, Reed MH (2008) Trace elements in hydrothermal quartz; relationships to cathodoluminescent textures and insights into hydrothermal processes. Geology 36:547–550Google Scholar
  92. Rusk BG, Reed MH, Dilles JH, Kent AJR (2006) Intensity of quartz cathodoluminescence and trace element content of quartz from the porphyry copper deposit in Butte, Montana. Am Mineral 91:1300–1312Google Scholar
  93. Samson I, Anderson A, Marshall D (2003) Fluid inclusions: analysis and interpretation. Mineral Assoc, Canada, Short Course vol 32, Quebec, 374 ppGoogle Scholar
  94. Schaefer BF, Pearson DG, Rogers NW, Barnicoat AC (2010) Re–Os isotope and PGE constraints on the timing and origin of gold mineralisation in the Witwatersrand basin. Chem Geol 276:88–94Google Scholar
  95. Seyedolali A, Krinsley DH, Boggs S, O`Hara PF, Dypvik H, Goles GG (1997) Provenance interpretation of quartz by scanning electron microscope-cathodoluminescence fabric analysis. Geology 25:787–790Google Scholar
  96. Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126Google Scholar
  97. Sørensen BE, Larsen RB (2009) Coupled trace element mobilisation and strain softening in quartz during retrograde fluid infiltration in dry granulite protoliths. Contrib Mineral Petrol 157:147–161Google Scholar
  98. Spear FS, Wark DA (2009) Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. J metamorphic Geol 27:187–205Google Scholar
  99. Sprunt ES, Dengler LA, Sloan D (1978) Effects of metamorphism on quartz cathodoluminescence. Geology 6:305–308Google Scholar
  100. Taylor RP (1992) Petrological and geochemical characteristics of the Pleasant Ridge zinnwaldite—topaz granite, Southern New Brunswick, and comparisons with other topaz-bearing felsic rocks. Can Mineral 30:895–921Google Scholar
  101. Thomas R, Förster HJ, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study. Contrib Mineral Petrol 148:582–601Google Scholar
  102. Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47Google Scholar
  103. Vennemann TW, Kesler SE, O’Neil JR (1992) Stable isotope compositions of quartz pebbles and their fluid inclusions as tracer of sediment provenance: implications for gold- and uranium-bearing quartz pebble conglomerates. Geology 20:837–840Google Scholar
  104. Vollbrecht A, Oberthür T, Ruedrich J, Weber K (2002) Microfabric analyses applied to the Witwatersrand gold- and uranium-bearing conglomerates: constraints on the provenance and post-depositional modification of rock and ore components. Mineral Deposita 37:433–451Google Scholar
  105. Vollbrecht A, Ruedrich J, Weber K, Oberthür T (1996) Gefügekundliche Untersuchungen an Geröllquarzen der Witwatersrand-Lagerstätte in Südafrika. Z Angew Geol 42:156–161Google Scholar
  106. Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754Google Scholar
  107. Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35:235–238Google Scholar
  108. Watt GR, Wright P, Galloway S, McLean C (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochim Cosmochim Acta 61:4337–4348Google Scholar
  109. Webster JD (2006) Melt inclusions in plutonic rocks. Mineral Ass Can, Short courses vol 36, Quebec, 237 ppGoogle Scholar
  110. Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Mineral 10:149–165Google Scholar
  111. Weil JA (1993) A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and Chemistry of SiO2 and the Si-SiO interface 2. Plenum Press, New York, pp 131–144Google Scholar
  112. Whiting KL, Rusk B, Spandler C, Dimond A, Emsbo P (2010) Insights into the origin of Charters Towers Warrior Vein system from fluid inclusions and quartz trace elements. EGRU Newsletter, School of Earth & Environmental Science, Economic Geology Research Unit, James Cook University, Australia, vol 8, pp 12–14Google Scholar
  113. Williams LB, Hervig RL, Bjørlykke K (1997) New evidence for the origin of quartz cements in hydrocarbon reservoirs revealed by oxygen isotope microanalyses. Geochim Cosmochim Acta 61:2529–2538Google Scholar
  114. Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contrib Sedimentol 8:1–96Google Scholar
  115. Zuffa GG (1985) Provenance of arenites. NATO ASI series C 148. Reidel Publ. Co., Boston, p 393Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ulf Kempe
    • 1
    Email author
  • Jens Götze
    • 1
  • Enchbat Dombon
    • 1
    • 2
  • Thomas Monecke
    • 1
    • 3
  • Mikhail Poutivtsev
    • 1
    • 4
  1. 1.Institute of MineralogyTU Bergakademie FreibergFreibergGermany
  2. 2.Department of Sciences, Technology, and InnovationMongolian University of Sciences and TechnologyUlaanbatarMongolia
  3. 3.Department of Geology and Geological EngineeringColorado School of MinesGoldenUSA
  4. 4.Maier-Leibnitz-Laboratory, Faculty of PhysicsTU MunichGarchingGermany

Personalised recommendations