Classification, Mineralogy and Industrial Potential of SiO2 Minerals and Rocks

  • Jens GötzeEmail author
Part of the Springer Geology book series (SPRINGERGEOL)


The various modifications of silica, especially quartz, play a central role in the composition of geological materials. Owing to their abundance and properties, SiO2 minerals and rocks have been used since the beginning of human being in different applications such as tools, weaponries, jewelleries or building materials. In modern industries, silica minerals are widely used as raw materials in high-tech applications (e.g. piezo quartz, optical devices, solar industry) or as mass products (e.g. glass sands, refractory industry, foundry industry, etc.). The occurrence of different silica minerals and the similarity in mineral composition of SiO2 rocks require a clear terminology and nomenclature of silica polymorphs and varieties as well as the different types of SiO2 rocks and their genesis. The knowledge about the development of specific properties (typomorphic properties) in dependence on the specific conditions of formation can be used both for the reconstruction of geological processes and for specific technical applications. The present work gives an overview about the state of the art of the mineralogical and petrographical nomenclature of SiO2 minerals and rocks, the analytical approach for the identification and classification of these materials, and their industrial applications.


SiO2 polymorphs Quartz Genesis Chemistry Physical properties Industrial application 



I gratefully acknowledge the comments of K. Ramseyer (Bern) and an anonymous reviewer, which helped to improve the quality of the paper.


  1. Baker JM, Robinson PT (1983) EPR of a new defect in natural quartz: possibly O2. Solid State Commun 48:551–554Google Scholar
  2. Bambauer HU (1961) Spurenelemente und γ-Farbzentren in Quarzen aus Zerr-klüf-ten der Schwei-zer Alpen. Schweizerische Mineralogische Petrographische Mitteilungen 41:335–367Google Scholar
  3. Barfels T (2001) Kathodolumineszenz amorpher und kristalliner Modifikationen von SiO2 und GeO2. Ph.D thesis, University Rostock, p 168Google Scholar
  4. Beall GH (1994) Industrial applications of silica. Rev Mineral 29:469–506Google Scholar
  5. Blankenburg H-J, Götze J, Schulz H (1994) Quarzrohstoffe. Deutscher Verlag für Grundstoffindustrie, Leipzig-Stuttgart, p 296Google Scholar
  6. Blatt H, Middleton GV, Murray RC (1980) Origin of sedimentary rocks, 2nd edn. Prentice-Hall, Inc., Englewood Cliffs, p 782Google Scholar
  7. Botis S, Nokhrin SM, Pan Y, Xu Y, Bonli T (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1580Google Scholar
  8. Channer DM DeR, Bray CJ, Spooner ETC (1999) Integrated cation-anion/volatile fluid inclusion analysis by gas and ion chromatography; methodology and examples. Chem Geol 154:59–82Google Scholar
  9. Cohen AJ (1956) Color centers in alpha-quartz. Part I. Smoky quartz. J Chem Phys 25:908–914Google Scholar
  10. Demars C, Pagel M, Deloule E, Blanc P (1996) Cathodoluminescence of quartz from sandstones: interpretation of the UV range by determination of trace element distributions and fluid-inclusion P-T-X properties in authogenic quartz. Am Mineral 81:891–901Google Scholar
  11. Dennen WH (1964) Impurities in quartz. Geol Soc Am Bull 75:241–246Google Scholar
  12. Dennen WH (1966) Stochiometric substitution in natural quartz. Geochim Cosmochim Acta 30:1235–1241Google Scholar
  13. Dennen WH (1967) Trace elements in quartz as indicators of provenance. Geol Soc Am Bull 78:125–130Google Scholar
  14. Ermakov NP (1950) Research on the nature of mineral-forming solutions (in Russ.). University of Kharkov Press, Kharkov, p 460Google Scholar
  15. Flem B, Larsen RB, Gromstvedt A, Mansfeld J (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem Geol 182:237–247Google Scholar
  16. Friebele EJ, Griscom DL, Stapelbroek M, Weeks RA (1979) Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica. Phys Rev Lett 42:1346–1348Google Scholar
  17. Füchtbauer H (1988) Sediments and sedimentary rocks. Schweizerbart, StuttgartGoogle Scholar
  18. Gemeinert M, Gaber M, Hager I, Willfahrt M, Bortschuloun D (1992) On correlation of gas-liquid-inclusion’s properties and melting behaviour of different genetic quartzes for production of transparent fused silica. Neues Jahrbuch Mineralogie, Abhandlungen 165:19–27Google Scholar
  19. Gerler J (1990) Geochemische untersuchungen an hydrothermalen, metamorphen, graniti-schen und pegmatitischen Quarzen und deren Flüssigkeitseinschlüssen. Ph.D thesis, University Göttingen, p 169Google Scholar
  20. Gerler J, Schnier C (1989) Neutron activation analysis of liquid inclusions exemplified by a quartz sample from the Ramsbeck Mine, F.R.G. Nucl Geophys 3:41–48Google Scholar
  21. Ghazi AM, Vanko DA, Roedder E, Seeley RC (1993) Determination of rare earth elements in fluid inclusions by inductively coupled plasma-mass spectrometry (ICP-MS). Geochim Cosmochim Acta 57:4513–4516Google Scholar
  22. Götze J (1997) Mineralogy and geochemistry of German high-purity quartz sands. In: Papunen H (ed) Mineral deposits: research and exploration. Balkema, Rotterdam, pp 721–724Google Scholar
  23. Götze J (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Freiberger Forschungsheft, C 485 Geowissenschaften, p 128Google Scholar
  24. Götze J (2009a) Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Mineral Mag 73:645–671Google Scholar
  25. Götze J (2009b) Cathodoluminescence microscopy and spectroscopy of lunar rocks and minerals. In: Gucsik A (ed) Cathodoluminescence and its application in the planetary sciences. Springer, Berlin, pp 87–110Google Scholar
  26. Götze J, Blankenburg H -J (1990) Zur Methodik der komplexen mineralogisch–geochemischen Charakterisierung von Glassanden. Sprechsaal International Ceramics & Glass Magazine 123, 8:795–803, 9:928–940, 12:1184–1189Google Scholar
  27. Götze J, Lewis R (1994) Distribution of REE and trace elements in size and mineral fractions of high purity quartz sands. Chem Geol 114:43–57Google Scholar
  28. Götze J, Plötze M (1997) Investigation of trace-element distribution in detrital quartz by electron paramagnetic resonance (EPR). Eur J Mineral 9:529–537Google Scholar
  29. Götze J, Zimmerle W (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions to Sedimentary Petrology, vol 21. Schweizerbart'sche Verlagsbuchhandlung, Nägele & Obermiller, Stuttgart, 91 SGoogle Scholar
  30. Götze J, Siedel H (2007) A complex investigation of building sandstones from Saxony (Germany). Mater Charact 58:1082–1094Google Scholar
  31. Götze J, Plötze M, Fuchs H, Habermann D (1999) Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineral Mag 63:149–163Google Scholar
  32. Götze J, Plötze M, Habermann D (2001) Cathodoluminescence (CL) of quartz: origin, spectral characteristics and practical applications. Mineral Petrol 71:225–250Google Scholar
  33. Götze J, Plötze M, Graupner T, Hallbauer DK, Bray C (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis and gas chromatography. Geochim Cosmochim Acta 68:3741–3759Google Scholar
  34. Götze J, Plötze M, Trautmann T (2005) Structure and luminescence characteristics of quartz from pegmatites. Am Mineral 90:13–21Google Scholar
  35. Götzinger MA (1990) Determination of aqueous salt solutions in fluid inclusions by infrared investigations. Neues Jahrbuch Mineralogie, Monatshefte H.1:1–12Google Scholar
  36. Graetsch H (1994) Structural characteristics of opaline and microcrystalline silica minerals. Rev Mineral 29:209–232Google Scholar
  37. Graupner T, Götze J, Kempe U, Wolf D (2000) Cathodoluminescence imaging as a tool for characterization of quartz and trapped fluid inclusions in multistage deformed mesothermal Au-quartz vein deposits: a case study from the giant Muruntau Au-ore deposit (Uzbekistan). Mineral Mag 64:1007–1016Google Scholar
  38. Griffiths JHE, Owen J, Ward IM (1954) Paramagnetic resonance in neutron-irradiated diamond and smoky quartz. Nature 173:439–442Google Scholar
  39. Griscom DL (1985) Defect structure of glasses. J Non-Cryst Solids 73:51–77Google Scholar
  40. Hallbauer DK (1992) The use of selected trace elements in vein quartz and quartz pebbles in identifying processes of formation and source rocks. Geologcal Society of South Africa 24th Congress, Bloemfontein, Abstracts, 157–159Google Scholar
  41. Hallbauer DK (1997) The application of capillary ion analysis to the geochemistry of natural aqueous fluids and in particular to the analysis of fluid inclusions in minerals. In: Proceedings of the 30th International Geological Congress, vol 9, pp 409–424Google Scholar
  42. Hanson B, Delano JW, Lindstrom DJ (1996) High-precision analysis of hydrous rhyolitic glass inclusions in quartz phenocrysts using the electron microprobe and INAA. Am Mineral 81:1249–1262Google Scholar
  43. Heany PJ, Prewitt CT, Gibbs GV (1994) Silica—physical behaviour, geochemistry and materials application. Reviews in Mineralogy, vol 29. Mineralogical Society of America, Washington, p 606Google Scholar
  44. Heynke U, Leeder O, Schulz H (1992) On distinguishing quartz of hydro-thermal or meta-morphogenic origin in different monomineralic veins in the eastern part of Germany. Mineral Petrol 46:315–329Google Scholar
  45. Houseknecht DW (1991) Use of cathodoluminescence petrography for understanding compaction, quartz cementation, and porosity in sandstones. In: Baker CE, Kopp OC (eds) Luminescence microscopy: quantitative and qualitative aspects. SEPM, Dallas, pp 59–66Google Scholar
  46. Ioannou SE, Götze J, Weiershäuser L, Zubowski SM, Spooner ETC (2003) Cathodoluminescence characteristics of Archean VMS-related quartz: Noranda, Ben Nevis, and Matagami districs, Abitibi Subprovince, Canada. G3 Online Publication, 5(2), doi: 10.1029/2003GC000613Google Scholar
  47. IOTA® (2005) IOTA® high-purity quartz. Accessed 20 May 2005
  48. Jourdan A-L (2008) Elemental and isotopic zoning in natural alpine quartz. Ph.D thesis, University LausanneGoogle Scholar
  49. Jung L (1992) High purity natural quartz. Part I: high purity natural quartz for industrial use. Part II: High purity natural quartz markets for suppliers and users. Quartz Technology. Liberty Corner, New Jersey, p 657Google Scholar
  50. Klemm W (1986) Beiträge zur analytischen Geochemie von Gas-Flüssigkeits-Einschlüssen in hydrothermalen Mineralen. Habilitation thesis, TU Bergakademie FreibergGoogle Scholar
  51. Knauth LP (1994) Petrogenesis of chert. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica—physical behaviour, geochemistry and materials applications. Reviews in Mineralogy, vol 29. Mineralogical Society of America, Washington, pp 233–258Google Scholar
  52. Komuro K, Horikawa Y, Toyoda S (2002) Development of radiation-damage halos in low-quartz: cathodoluminescence measurement after He+ ion implantation. Mineral Petrol 76:261–266Google Scholar
  53. Konhauser K (2007) Introduction to geomicrobiology. Blackwell Publishing, Malden, p 425Google Scholar
  54. Kostov RI, Bershov LV (1987) Systematics of paramagnetic electron-hole centres in natural quartz (in Russian.). Izvestiya Akademii nauk USSR, Seria Geologia 7:80–87Google Scholar
  55. Kostova B, Pettke T, Driesner T, Petrov P, Heinrich CA (2004) LAICP-MS study of fluid inclusions in quartz from the Yuzhna Petrovitsa deposit, Madan ore field, Bulgaria. Swiss Bull Mineral Petrol 84:25–36Google Scholar
  56. Krickl R, Nasdala L, Götze J, Grambole D (2008) Alteration of SiO2 caused by natural and artificial alpha-irradiation. Eur J Mineral 20:517–522Google Scholar
  57. Larsen RB, Polvé M, Juve G (2000) Granite pegmatite quartz from Evje-Iveland: trace element chemistry and implications for high-purity quartz formation. Norges Geologiske Undersøkelse Bulletin 436:57–65Google Scholar
  58. Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib Mineral Petrol 147:615–628Google Scholar
  59. Larsen RB, Jacomon F, Kronz A (2009) Trace element chemistry and textures of quartz during the magmatic hydrothermal transition of Oslo Rift granites. Mineral Mag 73:691–705Google Scholar
  60. Leeder O, Thomas R, Klemm W (1987) Einschlüsse in Mineralen. VEB Deutscher Grundstoffverlag, LeipzigGoogle Scholar
  61. Lehmann K, Berger A, Götte T, Ramseyer K, Wiedenbeck M (2009) Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineral Mag 73:633–644Google Scholar
  62. Lyakhovich VV (1972) Trace elements in rock-forming minerals of granitoides (in Russian). Nedra, Moscow, p 200Google Scholar
  63. Mackey JH (1963) EPR study of impurity-related color centers in germanium-doped quartz. J Chem Phys 39:74–83Google Scholar
  64. Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. J Sediment Petrol 60:53–58Google Scholar
  65. Milliken KL, Laubach SE (2000) Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 225–243Google Scholar
  66. Mineeva RM, Bershov LV, Petrov I (1991) EPR of surface-bound Fe3+ ions in polycrystalline quartz (in Russian). Dokladi Akademii Nauk SSSR 321:368–372Google Scholar
  67. Miyoshi N, Yamaguchi Y, Makino K (2005) Successive zoning of Al and H in hydrothermal vein quartz. Am Mineral 90:310–315Google Scholar
  68. Monecke T, Kempe U, Petersen S, Götze J, Herzig P, Wolf D (1999) Trace element characteristics of quartz from the TAG hydrothermal mound (Mid-Atlantic Ridge at 26E08’N). In: Mineral deposits: processes to processing. Balkema, Rotterdam, pp 551–554Google Scholar
  69. Monecke T, Bombach G, Klemm W, Kempe U, Götze J, Wolf D (2000) Determination of trace elements in quartz standard UNS-SpS and in natural quartz by ICP-MS. Geostand Newsl 24(1):73–81Google Scholar
  70. Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: A reconnaissance study. Earth Planet Sci Lett 202:709–724Google Scholar
  71. Mosebach R (1955) Neue Ergebnisse auf dem Gebiet der hydrothermalen Forschung. Chemiker Zeitung 79:583–599Google Scholar
  72. Müller A, Koch-Müller M (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral Mag 73:569–584Google Scholar
  73. Müller A, Seltmann R, Behr HJ (2000) Application of cathodoluminescence to magmatic quartz in tin granite—case study from the Schellerhau Granite Complex, Eastern Ertgebirge, Germany. Mineralium Deposita 35:169–185Google Scholar
  74. Müller A, Kronz A, Breiter K (2002) Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krušne Hory, Czech Republic). Bull Czech Geol Surv 77(2):135–145Google Scholar
  75. Müller A, Rene M, Behr H-J, Kronz A (2003a) Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovský Les Mts., Czech Republic). Mineral Petrol 79:167–191Google Scholar
  76. Müller A, Wiedenbeck M, Van den Kerkhof AM, Kronz A, Simon K (2003b) Trace elements in quartz—a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15:747–763Google Scholar
  77. Müller A, Ihlen PM, Kronz A (2005) Potential resources of quartz and feldspar raw material in Sørland IV: relationships between quartz, feldspar and mica chemistry and pegmatite type. Norwegian Geological Survey Report 2005.075, Trondheim, p 94Google Scholar
  78. Müller A, Ihlen PM, Wanvik JE, Flem B (2007) High-purity quartz mineralisation in kyanite quartzites, Norway. Mineralium Deposita 42:523–535Google Scholar
  79. Müller A, Ihlen PM, Kronz A (2008) Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. Eur J Mineral 20:447–464Google Scholar
  80. Nacken R (1950) Hydrothermale Mineralsynthese zur Züchtung von Quarzkristallen. Chemiker Zeitung 74:745–749Google Scholar
  81. Nishikawa H, Watanabe E, Ito D, Ohki Y (1994) Decay kinetics of the 4.4 eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2. Phys Rev Lett 72:2101–2104Google Scholar
  82. Norwegian Crystallites AS (2006) Norwegian crystallites AS-products crystal quartz analyses. Accessed 20 Sep 2006
  83. O’Brien MCM (1955) The structure of the colour centres in smoky quartz. In: Proceedings of the royal society, A 231:404–414Google Scholar
  84. Owen MR (1988) Radiation-damage halos in quartz. Geology 16:529–532Google Scholar
  85. Pan Y, Nilges MJ, Mashkovtsev RI (2009) Radiation-induced defects in quartz: a multifrequency EPR study and DFT modelling of new peroxy radicals. Mineral Mag 73:519–536Google Scholar
  86. Perny B, Eberhardt P, Ramseyer K, Mullis J (1992) Microdistribution of aluminium, lithium and sodium in quartz: possible causes and correlation with short-lived cathodoluminescence. Am Mineral 77:534–544Google Scholar
  87. Pettijohn FJ, Potter PE, Siever R (1987) Sand and Sandstone. Springer, New York, p 553Google Scholar
  88. Plötze M (1995) EPR investigations of quartz, scheelite and fluorite from high-thermal trace-metal mineralization (in German). Ph.D thesis, TU Bergakademie Freiberg, p 141Google Scholar
  89. Plötze M, Wolf D (1996) EPR- and TL spektren von quarz: bestrahlungsabhängigkeit der [TiO4/Li+]0-Zentren. European Journal of Mineralogy 8, Bh. 1:217Google Scholar
  90. Rakov LT, Milovidova ND, Kuvshinova KA, Moiseev BM (1985) EPR investigations of germanium centers in natural polycrystalline quartz (in Russian). Geokhimiya 9:1339–1344Google Scholar
  91. Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Am Mineral 75:791–800Google Scholar
  92. Ramseyer K, Baumann J, Matter A, Mullis J (1988) Cathodoluminescence colours of alpha-quartz. Mineral Mag 52:669–677Google Scholar
  93. Ramseyer K, AlDahan AA, Collini B, Landström O (1992) Petrological modifications in granitic rocks from the Siljan impact structure: evidence from cathodoluminescence. Tectonophysics 216:195–204Google Scholar
  94. Richter DK, Götte Th, Götze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrol 79:127–166Google Scholar
  95. Rinneberg H, Weil JA (1972) EPR studies of Ti3+-H+ centers in X-irradiated alpha-quartz. J Chem Phys 56:2019–2028Google Scholar
  96. Rink WJ, Rendell H, Marseglia EA, Luff BJ, Townsend PD (1993) Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Phys Chem Mineral 20:353–361Google Scholar
  97. Roedder E (1984) Fluid inclusions. Rev Mineral 12:1–645Google Scholar
  98. Rösler HJ (1981) Lehrbuch der Mineralogie. 2. Aufl., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, p 833Google Scholar
  99. Rusk BG, Reed MH, Dilles JH, Kent AJR (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Am Mineral 91:1300–1312Google Scholar
  100. Rusk B, Lowers HA, Reed MH (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology 36:547–550Google Scholar
  101. Rykart R (1995) Quarz-Monographie. 2. Aufl., Ott Verlag Thun, p 462Google Scholar
  102. Shepherd, Rankin TJ, Alderton AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie & Sons, GlasgowGoogle Scholar
  103. Sippel RF (1968) Sandstone petrology evidence from luminescence petrography. J Sed Petrol vol 38, pp 530–554Google Scholar
  104. Sippel RF (1971) Luminescence petrography of the Apollo 12 rocks and comperative features in terrestrial rocks and meteorites. In: Proceedings of the second lunar science conference, vol 1, pp 247–263Google Scholar
  105. Stegger P, Lehmann G (1989) The structures of three centers of trivalent iron in alpha-quartz. Phys Chem Mineral 16:401–407Google Scholar
  106. Stenina NG, Bazarov LS, Shcherbakova MY, Mashkovtsev RI (1984) Structural state and diffusion of impurities in natural quartz of different genesis. Phys Chem Mineral 10:180–186Google Scholar
  107. Stevens-Kalceff MA (2009) Cathodoluminescence microcharacterization of point defects in α-quartz. Mineral Mag 73:585–606Google Scholar
  108. Stevens-Kalceff MA, Phillips MR, Moon AR, Kalceff W (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. In: Pagel M, Barbin V, Blanc ,P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 193–224Google Scholar
  109. Strunz H, Tennyson C (1982) Mineralogical Tables. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, p 621Google Scholar
  110. Summerfield MA (1979) Origin and palaeoenvironmental interpretation of sarsens. Nature 281:137–139Google Scholar
  111. Summerfield MA (1983) Silcrete. In: Goudie AS, Pye K (eds) Chemical sediments and geomorphology. Academic Press, San Diego, pp 59–91Google Scholar
  112. Suttner L, Leininger RK (1972) Comparison of the trace element content of plutonic, volcanic and metamorphic quartz from Southwestern Montana. Geol Soc Am Bull 83:1855–1862Google Scholar
  113. Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47Google Scholar
  114. Van den Kerkhof AM, Kronz A, Simon K, Scherer T (2004) Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescnec and trace element analysis (Bamble sector, Norway). Contrib Mineral Petrol 146:637–652Google Scholar
  115. Walenczak Z (1969) Geochemistry of minor elements dispersed in quartz. Archi-wum Mi-nera-lo-giczne 28:189–335Google Scholar
  116. Walther H (1993) Silcretes in Germany and Australia. Ph.D thesis, TU Bergakademie Freiberg, p 126Google Scholar
  117. Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Mineral 10:149–165Google Scholar
  118. Weil JA (1993) A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and Chemistry of SiO2 and the Si-SiO interface 2. Plenum Press, New York, pp 131–144Google Scholar
  119. Wopfner H (1978) Silcretes of northern South Australia and adjacent regions. In: Langford-Smith T (ed) Silcrete in Australia, Armidale, pp 93–141Google Scholar
  120. Wopfner H (1983) Environment of silcrete formation: a comparison of examples from Australia and the Cologne Embayment, West Germany. In: Wilson RCL (ed) Residual deposits: surface related weathering processes and materials. Geological Society of London Special Publications 11, pp 151–158Google Scholar
  121. Wright PM, Weil JA, Buch T, Anderson JH (1963) Titanium colour centers in rose quartz. Nature 197:246–248Google Scholar
  122. Wünsch K (1987) Mineralogische, geochemische und strukturelle Untersuchungen an metamorphogenen Quarzmobilisaten. Ph.D thesis, TU Bergakademie Freiberg, GermanyGoogle Scholar
  123. Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contributions to Sedimentology, 8. Schweizerbart’sche Verlagsbuchhandlung, Nägele and Obermiller, Stuttgart, p 69Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Mineralogy, TU Bergakademie FreibergFreibergGermany

Personalised recommendations