Direct and Indirect Effects of Uranium on Microstructure of Sedimentary Phosphate: Fission Tracks and Radon Diffusion

  • Fatima Zahra Boujrhal
  • Rajaâ Cherkaoui El Moursli
Part of the Springer Geology book series (SPRINGERGEOL)


Moroccan sedimentary phosphates are essentially constituted by apatite and contain some tens ppm of uranium. This uranium undergoes spontaneous fission and radioactive decay in chain, since its geological formation. The spontaneous fission causes the radiation damage in the structure, by recoil of the fission products, whereas the radioactive decay products various radioactive daughters, where one of them is gas; Radon. This radioactive gas causes microstructure defects (nanopores) by diffusion. The present abstract focuses on the exam of the micro/nanostructure due to these two phenomena. The fission tracks of several grains of phosphate are studied by microscopy observations, whereas the radon emanation is analyzed by gamma spectrometry analysis of bulk of phosphate. Some interesting and correlated results are obtained.


Fission Track Spontaneous Fission Radon Activity Radon Emanation Apatite Fission Track Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berrada M, Boujrhal F.Z, Choukri A, El Khoukhi T, and Iraqi M.R (1992) Radon emanation from sedimentary phosphate and corresponding phosphogypsum, in: Radon and inert Gaz in the Earth Sciences and Environment, Toelicht. Verhand. Geologische en mijnkaarten van belgie (Geological and mining chart Mem. Expl. of Belgum(Mém. Expl. Cartes Géologique et Minière de la Belgique), No32, 322p/b, pp. 253–258Google Scholar
  2. Berrada M, Boujrhal F.Z, Couchot P, Chambaudet A, Mercier R (1995) Effet de la température de cuisson sur le potentiel d’émanation et le taux de dégazage en radon de phosphates sédimentaires, Dans: Gaz Geochimestry (C. Dubois, D. Clein, A. Chambaudet, M. Rebetez). Science Reviews 335–358Google Scholar
  3. Boujrhal F.Z, Berrada M, Cherkaoui El Moursli R (1999) Retention of radon by apatite structure: the case for sedimentary phosphate, Phosphorus Bulletin 10: 274–282CrossRefGoogle Scholar
  4. Boujrhal F.Z, Carpena J, Cherkaoui El Moursli R (2001) A study of radon retention and fission tracks annealing with temperature in natural apatite. Radiation Physics and Chemistry 61: 645–647CrossRefGoogle Scholar
  5. Boujrhal F.Z, Hlil E.K, Cherkaoui El Moursli R (2004) Study of apatite behaviour in the presence of radionuclides U and Rn and local modification of their crystalline and electronic structure. Radiation Physics and Chemistry 69: 1–6CrossRefGoogle Scholar
  6. Boujrhal F.Z, Hlil E.K, Cherkaoui El Moursli R, El Khoukhi T, Sghir B (2005) A comparative study of radon retention ability of crystalline apatite and amorphous oxide materials. Materials Science Forum 480–481:169–174Google Scholar
  7. Boujrhal F.Z, Sghir B, Ossama S, Cherkaoui El Moursli R, (2007) Investigation of the micro/nanostructure and the structure defect of sedimentary phosphates by electron microscopy. Acta Cryst A63: s148CrossRefGoogle Scholar
  8. Boujrhal F.Z Cherkaoui El Moursli R (2009) Morphologie externe et interne des phosphates sédimentaires marocains: effet de recuit. International Journal of Environmental Studies 66 Issue 2: 229–249CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fatima Zahra Boujrhal
    • 1
  • Rajaâ Cherkaoui El Moursli
    • 2
  1. 1.Faculté des Sciences et Techniques, Laboratoire de Gestion et de Valorisation des ressources naturelle (LGVEN)Université Sultan Moulay SlimaneBéni MellalMorocco
  2. 2.Faculté des Sciences, Laboratoire de Physique Nucléaire (LPNR)Université Mohammed VRabatMorocco

Personalised recommendations