Advertisement

Thermodynamic Data Dilemma

  • Broder J. Merkel
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Calculations practically are the only option to determine the uranium speciation because there is a lack of analytical techniques to analyze uranium species in natural waters. A comparison of common data sets distributed with geochemical codes shows that results differ considerable. Several important species are often not included. With respect to uranium minerals the situation is similar with differing log-k values for some minerals and not considering certain secondary uranium minerals that might be important for limiting uranium concentrations. Most problematic is the situation for data concerning ion exchange and surface complexation although such data is available in literature. Thus it can be stated that all available databases are not fit for purpose. Users of geochemical codes have to cope with the problem compiling or completing the data sets by deleting certain data and adding other. However, the difficulty is to define under which conditions thermodynamic data should be selected or deselected.

Keywords

Thermodynamic Data Uranium Mineral Acid Mine Water Uranium Species Uranyl Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alekseev, E. V., Krivovichev, S. V. & Depmeier, W., 2007. K2[(UO2)As2O7] – The first uranium polyarsenate. Zeitschrift für Anorganische und Allgemeine Chemie, 633(8), 1125.CrossRefGoogle Scholar
  2. Bachmaf, S., Planer-Friedrich, B. & Merkel, B., 2008. Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite. Radiochimica Acta, 96(6), 359–366.CrossRefGoogle Scholar
  3. Bernhard, G., Geipel, G., Brendler, V. & Nitsche, H., 1996. Speciation of Uranium in Seepage Waters of a Mine Tailing Pile Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS). Radiochimica Acta, 74, 87.CrossRefGoogle Scholar
  4. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S. & Nitsche, H., 2001. Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq.) species. Radiochimica Acta, 89(8), 511.CrossRefGoogle Scholar
  5. Catalano, J. G. & Brown, J. G. E., 2005. Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation. Geochimica et Cosmochimica Acta, 69(12), 2995.CrossRefGoogle Scholar
  6. Chandratillake, M. R., Newton, G. W. A. & Robinso, V. J., 1988. Comparison of thermodynamic databases used in geochemical modelling. In: Nuclear Science and Technilogy (ed Cimmunities, C. o. t. E.), pp. 19.Google Scholar
  7. Davis, J. A., Meece, D. E., Kohler, M. & Curtis, G. P., 2004. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments. Geochimica et Cosmochimica Acta, 68(18), 3621.CrossRefGoogle Scholar
  8. Dong, W., Ball, W. P., Liu, C., Wang, Z., Stone, A. T., Bai, J. & Zachara, J. M., 2005. Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment. Environmental Science and Technology, 39(20), 7949.CrossRefGoogle Scholar
  9. Dong, W. & Brooks, S. C., 2006. Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr 2+, and Ba2+) using anion exchange method. Environmental Science and Technology, 40(15), 4689.CrossRefGoogle Scholar
  10. Fox, P. M., Davis, J. A. & Zachara, J. M., 2006. The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochimica et Cosmochimica Acta, 70(6), 1379.CrossRefGoogle Scholar
  11. Frost, R. L., Cejka, J. & Dickfos, M. J., 2009. Raman spectroscopic study of the uranyl minerals vanmeersscheite U(OH)4[(UO2)3(PO4)2(OH)2]·4H2O and arsenouranylite Ca(UO2)[(UO2)3(AsO4)2(OH)2]·(OH)2·6H2O. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 71(5), 1799.CrossRefGoogle Scholar
  12. Geipel, G., Amayri, S. & Bernhard, G., 2008. Mixed complexes of alkaline earth uranyl carbonates: A laser-induced time-resolved fluorescence spectroscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(1), 53.CrossRefGoogle Scholar
  13. Gezahegne, W., Bachmaf, S., Geipel, G., Planer-Friedrich, B. & Merkel, B., 2009. Detection of uranylarsenates in acidic and alkaline solutions with time resolved laser-induced fluorescence spectroscopy (TRLFS). Geochimica et Cosmochimica Acta, 73(13).Google Scholar
  14. Grenthe, I., 1992. Chemical Thermodynamics of Uranium, Vol. 1. Elsevier, North Holland, Amsterdam, London, New York, Tokyo.Google Scholar
  15. Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H., Mompean, F. J., Illemassene, M., Domenech-Orti, C. & Ben-Said, K., 2003. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium (Chemical Thermodynamics). 5.Google Scholar
  16. Huber, F. & Lützenkirchen, J., 2009. Uranyl Retention on Quartz-New Experimental Data and Blind Prediction Using an Existing Surface Complexation Model. Aquatic Geochemistry, 1.Google Scholar
  17. Merkel, B. & Nair, S., 2011. Impact if speciation and sorption on migration of uranium in groundwater. In: Nachhaltigkeit und Langzeitaspekte bei der Sanierung von Uranbergbau- und Aufbereitungsstandorten (ed Paul, M.), Wismut GmbH.Google Scholar
  18. Nair, S. & Merkel, B. J., 2011. Effect of Mg-Ca-Sr on the sorption behavior of uranium(VI) on silica. In: The new Uranium Mining boom – Challenge and lessons learned (eds Merkel, B. & Schipek, M.) Uranium Mining and Hydrogeology VI, Springer, Freiberg.Google Scholar
  19. Parkhurst, D. L. & Appelo, C. A. J., 1999. User’s guide to PHREEQC (version 2).Google Scholar
  20. Romy Schulze, B. M., 2011. Sorption of Uranium on Iron Coated Sand in the presence of Arsenate, Selenate, and Phosphate. In: The new Uranium Mining boom – Challenge and lessons learned (eds Merkel, B. J. & Schipek, M.) Uranium Mining and Hydrogeology VI, Springer.Google Scholar
  21. Sherman, D. M., Peacock, C. L. & Hubbard, C. G., 2008. Surface complexation of U(VI) on goethite (-FeOOH). Geochimica et Cosmochimica Acta, 72(2), 298.CrossRefGoogle Scholar
  22. Walenta, K., Hatert, F., Theye, T., Lissner, F. & RÃller, K., 2009. Nielsbohrite, a new potassium uranyl arsenate from the uranium deposit of Menzenschwand, southern Black Forest, Germany. European Journal of Mineralogy, 21(2), 515.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Broder J. Merkel
    • 1
  1. 1.Technische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations