Advertisement

Uranium (VI) Binding to Humic Substances: Speciation, Estimation of Competition, and Application to Independent Data

  • Pascal E. Reiller
  • Laura Marang
  • Delphine Jouvin
  • Marc F. Benedetti
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

In groundwaters containing natural organic matter (NOM), mostly humic substances (HS), it is expected that it plays a role on the behavior of uranium in the environment. Another point is the actual effect of the competition with major cations and carbonate ions for U(VI)-NOM complexation. Our aim is to acquire experimental data for the U(VI)-HS complexation with two new different methodologies. The NICA-Donnan model is then used to predict uranium speciation in different groundwaters.

Keywords

Humic Substance Natural Organic Matter Acceptor Side Savannah River Site Heterogeneity Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bruggeman C, Maes N (2010) Uptake of uranium(VI) by pyrite under Boom clay conditions: Influence of dissolved organic carbon. Environ Sci Technol 44: 4210–4216.CrossRefGoogle Scholar
  2. de Craen M, Wang L, van Geet M, Moors H (2004) Geochemistry of Boom Clay pore water at the Mol site, SCKCEN-BLG-990, SCKCEN, Mol, Belgium.Google Scholar
  3. Dong WM, Brooks SC (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ Sci Technol 40: 4689–4695.CrossRefGoogle Scholar
  4. Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand M (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, North-Holland, Amsterdam, The Netherlands.Google Scholar
  5. Hendry MJ, Wassenaar LI (2000) Controls on the distribution of major ions in pore waters of a thick surficial aquitard. Water Resour Res 36: 503–513.CrossRefGoogle Scholar
  6. Hummel W, Anderegg G, Rao LF, Puigdomènech I, Tochiyama O (2005) Chemical thermodynamics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands, Elsevier, Amsterdam, The Netherlands.Google Scholar
  7. Jackson BP, Ranville JF, Bertsch PM, Sowder AG (2005) Characterization of colloidal and humic-bound Ni and U in the “dissolved” fraction of contaminated sediment extracts. Environ Sci Technol 39: 2478–2485.CrossRefGoogle Scholar
  8. Keizer MG, van Riemsdijk WH (1994) A computer program for the calculation of chemical speciation and transport in soil-water systems (ECOSAT 4.7). Agricultural University of Wageningen, Wageningen, The Netherlands.Google Scholar
  9. Kinniburgh DG, van Riemsdijk WH, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surf A 151: 147–166.CrossRefGoogle Scholar
  10. MacCarthy P (2001) The principles of humic substances. Soil Sci 166: 738–751.CrossRefGoogle Scholar
  11. Marang L (2007) Influence de la matière organique naturelle sur la spéciation des radionucléides en contexte géochimique, PhD Thesis, Université Denis Diderot (Paris VII), and CEA-R-6187 Report. http://tel.archives-ouvertes.fr/docs/00/41/87/23/PDF/These_laura_marang_final.pdf., Paris, France.Google Scholar
  12. Marang L, Reiller P, Pepe M, Benedetti MF (2006) Donnan membrane approach: From equilibrium to dynamic speciation. Environ Sci Technol 40: 5496–5501.CrossRefGoogle Scholar
  13. Milne CJ, Kinniburgh DG, Tipping E (2001) Generic NICA-Donnan model parameters for proton binding by humic substances. Environ Sci Technol 35: 2049–2059.CrossRefGoogle Scholar
  14. Milne CJ, Kinniburgh DG, van Riemsdijk WH, Tipping E (2003) Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol 37: 958–971.CrossRefGoogle Scholar
  15. Ranville JF, Hendry MJ, Reszat TN, Xie QL, Honeyman BD (2007) Quantifying uranium complexation by groundwater dissolved organic carbon using asymmetrical flow field-flow fractionation. J Contam Hydrol 91: 233–246.CrossRefGoogle Scholar
  16. Saito T, Nagasaki S, Tanaka S, Koopal LK (2004) Application of the NICA-Donnan model for proton, copper and uranyl binding to humic acid. Radiochim Acta 92: 567–574.CrossRefGoogle Scholar
  17. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium (VI) sorption complexes on silica, alumina and montmorillonite. Geochim Cosmochim Acta 64: 2431–2438.CrossRefGoogle Scholar
  18. Temminghoff EJM, Plette ACC, van Eck R, van Riemsdijk WH (2000) Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal Chim Acta 417: 149–157.CrossRefGoogle Scholar
  19. Weber T, Allard T, Tipping E, Benedetti MF (2006) Modeling iron binding to organic matter. Environ Sci Technol 40: 7488–7493.CrossRefGoogle Scholar
  20. Wolf M, Buckau G, Geyer S (2004) Isolation and characterization of new batches of Gohy-573 humic and fulvic acids., Buckau G ed., Humic Substances in Performance Assessment of Nuclear Waste Disposal: Actinide and Iodine Migration in the Far-Field Second Technical Progress Report, Forschungszentrum Karlsruhe, FZKA 6969, http://bibliothekfzkde/zb/berichte/ FZKA6969pdf, 111–124.Google Scholar
  21. Zeh P, Czerwinski KR, Kim JI (1997) Speciation of uranium in Gorleben groundwaters. Radiochim Acta 76: 37–44.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pascal E. Reiller
    • 1
  • Laura Marang
    • 1
    • 2
  • Delphine Jouvin
    • 2
  • Marc F. Benedetti
    • 2
  1. 1.Laboratoire de Spéciation des Radionucléides et des Molécules, BP 11Commissariat à l’Energie Atomique et aux Energies Alternatives, CE Saclay, DEN/DANS/DPC/SECRGif sur YvetteFrance
  2. 2.Laboratoire de Géochimie des EauxUniversité Paris Diderot, IPGP and UMR CNRS 71574Paris Cedex 13France

Personalised recommendations