Advertisement

Cadmium and Uranium in German and Brazilian Phosphorous Fertilizers

  • Geerd A. Smidt
  • Franziska C. Landes
  • Leandro Machado de Carvalho
  • Andrea Koschinsky
  • Ewald Schnug
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

A collection of phosphorous (P) fertilizers used in Germany (N = 75) and southern Brazil (N = 39) was analyzed for cadmium (Cd) and uranium (U). Both collections show high mean concentrations of Cd (12.0 and 18.6 mg/kg respectively) and U (61.3 and 70.16 mg/kg respectively), while maximum concentrations of 56 mg Cd/kg and up to 200 mg U/kg were found. Currently, up to 42 t Cd and 228 t U are distributed annually on German and 611 t Cd and 1614 t on Brazilian agricultural soils by mineral P fertilizers.

Keywords

Rock Phosphate Arable Soil Good Agricultural Practice Brazilian Soil Fertilizer Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atommüll-Endlager.de (http://www.atommuell-endlager.de/index.php?option=com_content& task=view&id=15&Itemid=1)Google Scholar
  2. Aydin I, Aydin F, Saydut A, Bakirdere G, Hamamci C (2010) Hazardous metal geochemistry of sedimentary phosphate rock used for fertilizer (Mazıdag, SE Anatolia, Turkey) Microchem. J. 96:247–251CrossRefGoogle Scholar
  3. Barisic D, Lulic S, Miletic P (1992) Radium and uranium in phosphate fertilizers and their impact on the radioactivity of waters, Wat. Res. 26:607–611CrossRefGoogle Scholar
  4. Baumann N, Arnold T, Read D (2008) Uranium ammunition in soil. In: de Kok, L. J. and Schnug, E. (eds.). Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:73–78Google Scholar
  5. Birke M, Rauch U (2008) Uranium in stream water of Germany. In: de Kok, L. J. and Schnug, E. (eds.). Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:79–91Google Scholar
  6. da Conceicao FT, Bonotto DM (2006) Radionuclides, heavy metals and fluorine incidence at Tapira phosphate rocks, Brazil, and their industrial (by) products. Environ. Poll. 139:232–243CrossRefGoogle Scholar
  7. Dittrich B, Klose R (2008) Bestimmung und Bewertung von Schwermetallen in Düngemitteln, Bodenhilfsstoffen und Kultursubstraten. Schriftenr. Sächs. Landesanst. Landwirtsch. 3/2008Google Scholar
  8. Duijnisveld WHM, Godbersen L, Dilling J, Gäbler HE, Utermann J, Klump J, Scheeder G (2009) UBA-Forschungsbericht FKZ 20472264. Datenanhang.Google Scholar
  9. DüMV – Düngemittelverordnung (2008) Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (Düngemittelverordnung – DüMV)Google Scholar
  10. FAO – Food and Agriculture Organization of the United Nations (2004) Fertilizer use by crop in Brazil. First version, published by FAO, RomeGoogle Scholar
  11. Gasques JG, Bastos ET, Silva LF da (2009) Projeções do Agronegócio – Brasil 2008/09 a 2018/2019. Ministério da Agricultura, Pecuária e Abastecimento – Assessoria de Gestão Estratégica. Brasília, DFGoogle Scholar
  12. Heffer P, Maene L (2008) International Fertilizer Manufacturers Association, Paris, personal communicationGoogle Scholar
  13. Huhle B, Kummer S, Merkel B (2008) Mobility of uranium from phosphate fertilizers in sandy soils. In: de Kok, L. J., Schnug, E. (eds.). Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:47–56Google Scholar
  14. IVA – Industrieverband Agrar (2010) Industrieverband Agrar für europaweiten Grenzwert Cadmium in phosphathaltigen Mineraldüngern. http://www.iva.de/themen-und-positionen-des-iva/industrieverband-agrar-fuer-europaweiten-grenzwert-cadmium-phospha-thalGoogle Scholar
  15. Kabata-Pendias A, Mukherjee AB (2007) Trace Elements from Soil to Human. ISBN-10 3-540-32713-4 Springer Berlin Heidelberg New YorkCrossRefGoogle Scholar
  16. Kratz S, Schnug E (2006) Rock phosphates and P fertilizers as sources of U contamination in agricultural soils. In: Merkel, B.J., Hasche-Berger, A. (eds.). Uranium in the environment. Springer, Berlin Heidelberg: 57–68CrossRefGoogle Scholar
  17. Kratz S, Knappe F, Rogasik J, Schnug E (2008) Uranium balances in agroecosystems. In: de Kok, L.J., Schnug, E. (eds.). Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:179–190Google Scholar
  18. Kratz S, Godlinski F, Schnug E (2011) Heavy metal loads to agricultural soils from the application of commercial phosphorus fertilizers in Germany and their contribution to background concentration in soils. In: Merkel, B. (ed.). Uranium Mining and Hydrogeology VIGoogle Scholar
  19. Lottermoser B (2009) Trace metal enrichment in sugarcane soils due to the long-term application of fertilisers, North Queensland, Australia: geochemical and Pb, Sr, and U isotopic compositions. Austr. J. Soil Res. 47:1–10CrossRefGoogle Scholar
  20. Ministry of Agriculture Brazil (2006) Instrução Normativa No 27, de 05 de Junho de 2006Google Scholar
  21. Read D, Trueman E, Arnold T, Baumann N (2008) The fate of uranium in phosphate-rich soils. In: de Kok, L. J. and Schnug, E. (eds.). Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:65–72Google Scholar
  22. Rogasik J, Kratz S, Funder U, Panten K, Barkusky D, Baumecker M, Gutser R, Lausen P, Scherer HW (2008) Uranium in soils of German long-term fertilizer experiments. In: de Kok, L.J., Schnug, E. (eds.). Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:135–146Google Scholar
  23. Salminen R (2005) Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps, Geological Survey of Finland, Espoo. ISBN 951-890-921-3Google Scholar
  24. Santos AJG, Mazzilli BP, Favaro DIT, Silva PSC (2006) Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods. J. Environ. Radioactiv. 87:52–61CrossRefGoogle Scholar
  25. Sattouf M (2007) Identifying the origin of rock phosphates and phosphorus fertilizers using isotope ratio techniques and heavy metal patterns, Landbauforsch. Völkenrode, Agric. Res. 311:1–78Google Scholar
  26. Sattouf M, Kratz S, Diemer K, Fleckenstein J, Rienitz D, Schiel D, Schnug E (2008) Significance of uranium and strontium isotope ratios for retracing the fate of uranium during the processing of phosphate fertilizers from rock phosphates. In: de Kok L.J., Schnug E. (eds.). Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:65–72Google Scholar
  27. Saueia CH, Mazzilli BP, Favaro DIT (2005) Natural radioactivity in phosphate rock, phosphogypsum and phosphate fertilizers in Brazil. J. Radioanal. Nucl. Chem. 264:445–448CrossRefGoogle Scholar
  28. Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde, 15th Ed. Spektrum Akademischer Verlag, Heidelberg, Berlin, GermanyGoogle Scholar
  29. Sheppard SC, Sheppard MI, Gallerand MO, Sanipelli B (2005) Derivation of ecotoxicity thresholds for uranium. J. Env. Radio. 79: 55–83CrossRefGoogle Scholar
  30. Smidt GA, Hassoun R, Birke M, Erdinger L, Schäf M, Knolle F, Schnug E (2011) Uranium in German tap and groundwater – occurrence and origins. In: Merkel, B. (ed.). Uranium Mining and Hydrogeology VIGoogle Scholar
  31. Smidt G (in prep.) Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in ground and tap water. Dissertation thesis Jacobs University BremenGoogle Scholar
  32. Spalding RF, Sackett WM (1972) Uranium in runoff from gulf of Mexico distributive province – anomalous concentrations. Science 175:629–631CrossRefGoogle Scholar
  33. Taylor SR, McLennan SM (1985) The Continental Crust: its Composition and Evolution he Continental Crust. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Black well Scientific. 312 pp.Google Scholar
  34. Taylor M, Kim N (2008) The fate of uranium contaminants of phosphate fertilizers. In: de Kok L.J, Schnug E. (eds.). (2008) Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:147–156Google Scholar
  35. Tunney H, Stojanovic M, Mrdakovic Popic J, McGrath D, Zhang C (2009) Relationship of soil phosphorus with uranium in grassland mineral soils in Ireland using soils from a long term phosphorus experiment and a National soil database. J. Soil Sci. Plant. Nutr. 172: 346–352CrossRefGoogle Scholar
  36. Utermann J, Fuchs M (2008) Uranium in German soils. In: de Kok L.J., Schnug, E. (eds.). (2008) Loads and Fate of fertilizer-derived uranium. Backhuys Publishers, Leiden. ISBN/EAN 978-90-5782-193-6:33–46Google Scholar
  37. Zheng ZP, Tokunaga TK, Wan JM (2003) Influence of calcium carbonate on U(VI) sorption to soils. Env. Sci.Tech. 37:5603–5608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Geerd A. Smidt
    • 1
  • Franziska C. Landes
    • 1
  • Leandro Machado de Carvalho
    • 2
  • Andrea Koschinsky
    • 1
  • Ewald Schnug
    • 3
  1. 1.Integrated Environmental Studies ProgramJacobs University BremenBremenGermany
  2. 2.Institute for Analytical ChemistryFederal University of Santa Maria (UFSM)Santa MariaBrazil
  3. 3.Department of Life SciencesTechnical University BraunschweigBraunschweigGermany

Personalised recommendations