Advertisement

MaLeCoP Machine Learning Connection Prover

  • Josef Urban
  • Jiří Vyskočil
  • Petr Štěpánek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6793)

Abstract

Probabilistic guidance based on learned knowledge is added to the connection tableau calculus and implemented on top of the lean-CoP theorem prover, linking it to an external advisor system. In the typical mathematical setting of solving many problems in a large complex theory, learning from successful solutions is then used for guiding theorem proving attempts in the spirit of the MaLARea system. While in MaLA Rea learning-based axiom selection is done outside unmodified theorem provers, in MaLeCoP the learning-based selection is done inside the prover, and the interaction between learning of knowledge and its application can be much finer. This brings interesting possibilities for further construction and training of self-learning AI mathematical experts on large mathematical libraries, some of which are discussed. The initial implementation is evaluated on the MPTP Challenge large theory benchmark.

Keywords

Theorem Prover External System External Advice Large Theory Proof Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armando, A., Baumgartner, P., Dowek, G. (eds.): IJCAR 2008. LNCS (LNAI), vol. 5195. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Carlson, A., Cumby, C., Rosen, J., Roth, D.: SNoW User’s Guide. Technical Report UIUC-DCS-R-99-210, University of Illinois at Urbana-Champaign (1999)Google Scholar
  3. 3.
    Denzinger, J., Fuchs, M., Goller, C., Schulz, S.: Learning from Previous Proof Experience. Technical Report AR99-4, Institut für Informatik, Technische Universität München (1999)Google Scholar
  4. 4.
    Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: CADE 11 (2011) (To appear)Google Scholar
  5. 5.
    Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning 40(1), 35–60 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Otten, J., Bibel, W.: leanCoP: Lean Connection-Based Theorem Proving. Journal of Symbolic Computation 36(1-2), 139–161 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Otten, J.: leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving in classical and intuitionistic logic (system descriptions). In: Armando, A., et al. (eds.) [1], pp. 283–291Google Scholar
  8. 8.
    Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2-3), 159–182 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR 2006. CEUR, vol. 192, pp. 18–33 (2006)Google Scholar
  10. 10.
    Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  11. 11.
    Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)zbMATHGoogle Scholar
  12. 12.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Suda, M., Sutcliffe, G., Wischnewski, P., Lamotte-Schubert, M., de Melo, G.: External Sources of Axioms in Automated Theorem Proving. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 281–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Tsivtsivadze, E., Urban, J., Geuvers, H., Heskes, T.: Semantic graph kernels for automated reasoning. In: SDM 2011 (to appear, 2011)Google Scholar
  15. 15.
    Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized mathematics. International Journal on Artificial Intelligence Tools 15(1), 109–130 (2006)CrossRefGoogle Scholar
  16. 16.
    Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning 37(1-2), 21–43 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical Library. In: ICMS, pp. 155–166 (2010)Google Scholar
  18. 18.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1- machine learner for automated reasoning with semantic guidance. In: Armando, et al. (eds.) [1], pp. 441–456Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Josef Urban
    • 1
  • Jiří Vyskočil
    • 2
  • Petr Štěpánek
    • 3
  1. 1.Radboud University NijmegenThe Netherlands
  2. 2.Czech Technical UniversityCzech Republic
  3. 3.Charles UniversityCzech Republic

Personalised recommendations